Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: D. P. Rogers x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
Data from surface stations, profilers, long-range aircraft surveys, and satellites were used to characterize the large-scale structure of the marine boundary layer off of California and Oregon during June and July 1996. To supplement these observations, June–July 1996 averages of meteorological fields from the U.S. Navy’s operational Coupled Ocean–Atmospheric Mesoscale Prediction System (COAMPS) model were generated for the region. Model calculations show a broad band of fast northerly surface winds exceeding 7 m s−1 extending along the California–Oregon coast. Buoy-measured peaks of 7.1 m s−1 off Bodega Bay, 7.2 m s−1 off Point Piedras Blancas, and 8.8 m s−1 near Point Conception were reported. Mean winds at the buoys located 15–25 km offshore are generally faster than those at coastal stations, and all station winds are faster in the afternoon.
The aircraft and station observations confirm that an air temperature inversion typically marks the top of the marine boundary layer, which deepens offshore. Along the coast, the marine boundary layer thins between Cape Blanco and Santa Barbara. The inversion base height is at its lowest (195 m) at Bodega Bay in northern California and at its highest at Los Angeles and San Diego (416 m). The inversion strength is strongest between Bodega Bay and Point Piedras Blancas, exceeding 10.8°C. The June–July 1996 marine boundary layer depth from COAMPS shows a gradual deepening with distance offshore.
The model-averaged flow within the marine boundary layer is supercritical (Froude number > 1) in a region between San Francisco and Cape Mendocino that extends offshore to 126.4°W. Smaller isolated supercritical areas occur in the lee of every major cape, with the peak Froude number of 1.3 in the lee of Cape Mendocino. This is consistent with aircraft flights of Coastal Waves ’96, when extensive regions of supercritical flow off central California and downwind of major capes were recorded with highest Froude numbers around 1.5–2.0. A broad, wedge-shaped area of nearly critical flow (Froude number > 0.8) extends from Cape Blanco to Point Piedras Blancas and offshore to about 128.5°W in the model output.
The model wind stress has a broad maximum exceeding 0.3 N m−2 between Cape Mendocino and San Francisco with the highest values found within 100 km of the coast. Stress calculated directly from low aircraft legs is highest in the lee of large capes with peak values exceeding 0.7 N m−2. Overall aircraft magnitudes are similar to the model’s, but a direct comparison with the 2-month average from the model is not possible due to the lesser space and time coverage of the flights. The stress maxima along the California coast shown in the model results are spatially consistent with the region of coldest sea surface temperature observed by satellite.
Abstract
Data from surface stations, profilers, long-range aircraft surveys, and satellites were used to characterize the large-scale structure of the marine boundary layer off of California and Oregon during June and July 1996. To supplement these observations, June–July 1996 averages of meteorological fields from the U.S. Navy’s operational Coupled Ocean–Atmospheric Mesoscale Prediction System (COAMPS) model were generated for the region. Model calculations show a broad band of fast northerly surface winds exceeding 7 m s−1 extending along the California–Oregon coast. Buoy-measured peaks of 7.1 m s−1 off Bodega Bay, 7.2 m s−1 off Point Piedras Blancas, and 8.8 m s−1 near Point Conception were reported. Mean winds at the buoys located 15–25 km offshore are generally faster than those at coastal stations, and all station winds are faster in the afternoon.
The aircraft and station observations confirm that an air temperature inversion typically marks the top of the marine boundary layer, which deepens offshore. Along the coast, the marine boundary layer thins between Cape Blanco and Santa Barbara. The inversion base height is at its lowest (195 m) at Bodega Bay in northern California and at its highest at Los Angeles and San Diego (416 m). The inversion strength is strongest between Bodega Bay and Point Piedras Blancas, exceeding 10.8°C. The June–July 1996 marine boundary layer depth from COAMPS shows a gradual deepening with distance offshore.
The model-averaged flow within the marine boundary layer is supercritical (Froude number > 1) in a region between San Francisco and Cape Mendocino that extends offshore to 126.4°W. Smaller isolated supercritical areas occur in the lee of every major cape, with the peak Froude number of 1.3 in the lee of Cape Mendocino. This is consistent with aircraft flights of Coastal Waves ’96, when extensive regions of supercritical flow off central California and downwind of major capes were recorded with highest Froude numbers around 1.5–2.0. A broad, wedge-shaped area of nearly critical flow (Froude number > 0.8) extends from Cape Blanco to Point Piedras Blancas and offshore to about 128.5°W in the model output.
The model wind stress has a broad maximum exceeding 0.3 N m−2 between Cape Mendocino and San Francisco with the highest values found within 100 km of the coast. Stress calculated directly from low aircraft legs is highest in the lee of large capes with peak values exceeding 0.7 N m−2. Overall aircraft magnitudes are similar to the model’s, but a direct comparison with the 2-month average from the model is not possible due to the lesser space and time coverage of the flights. The stress maxima along the California coast shown in the model results are spatially consistent with the region of coldest sea surface temperature observed by satellite.
Abstract
An instrumented C-130 aircraft flew over water around Point Sur, California, on 17 June 1996 under strong northwest wind conditions and a strong marine inversion. Patterns were flown from 30- to 1200-m elevation and up to 120 km offshore. Nearshore, marine air accelerated past Point Sur, reaching a surface maximum of 17 m s−1 in the lee. Winds measured over water in and above the marine layer were alongshore with no significant cross-shore flow. Sea level pressure, 10-m air temperature, and air temperature inversion base generally decreased toward the coast and were an absolute minimum just downcoast of the wind speed maximum. The sea surface temperature also decreased toward the coast, but was an absolute minimum directly off Point Sur. The near-coast, air temperature inversion base height was 400 m north of Point Sur, decreased to a minimum of 50 m in the lee of Point Sur, then increased farther to the south. Wind speeds were at a maximum centered along the air temperature inversion base; the fastest was 27 m s−1 in the lee of Point Sur.
Using a Froude number calculation that includes the lower half of the capping layer, the marine layer in the area is determined to have been supercritical. Most of the marine layer had Froude numbers between 1.0 and 2.0 with the extreme range of 0.8–2.8. Temperatures in the air temperature inversion in the lee were substantially greater than elsewhere, modifying the surface pressure gradient. The overall structure was a hydraulic supercritical expansion fan in the lee of Point Sur under the influence of rotation and surface friction.
The Naval Research Laboratory nonhydrostatic Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) indicated a broad, supercritical marine boundary layer moving to the south along central California and Point Sur during the aircraft flight. The marine boundary layer thinned and accelerated into the lee of Point Sur, which was the site of the fastest sea level wind speed along central California. Isotherms dip and speeds decreased in the lee of Point Sur in the capping inversion well above the marine layer. COAMPS forecasted a compression shock wave initiating off the upwind side of the topography behind Point Sur and other coastal points to the north. Evidence from the model and the aircraft supports the existence of an oblique hydraulic jump on the north side of Point Sur.
Abstract
An instrumented C-130 aircraft flew over water around Point Sur, California, on 17 June 1996 under strong northwest wind conditions and a strong marine inversion. Patterns were flown from 30- to 1200-m elevation and up to 120 km offshore. Nearshore, marine air accelerated past Point Sur, reaching a surface maximum of 17 m s−1 in the lee. Winds measured over water in and above the marine layer were alongshore with no significant cross-shore flow. Sea level pressure, 10-m air temperature, and air temperature inversion base generally decreased toward the coast and were an absolute minimum just downcoast of the wind speed maximum. The sea surface temperature also decreased toward the coast, but was an absolute minimum directly off Point Sur. The near-coast, air temperature inversion base height was 400 m north of Point Sur, decreased to a minimum of 50 m in the lee of Point Sur, then increased farther to the south. Wind speeds were at a maximum centered along the air temperature inversion base; the fastest was 27 m s−1 in the lee of Point Sur.
Using a Froude number calculation that includes the lower half of the capping layer, the marine layer in the area is determined to have been supercritical. Most of the marine layer had Froude numbers between 1.0 and 2.0 with the extreme range of 0.8–2.8. Temperatures in the air temperature inversion in the lee were substantially greater than elsewhere, modifying the surface pressure gradient. The overall structure was a hydraulic supercritical expansion fan in the lee of Point Sur under the influence of rotation and surface friction.
The Naval Research Laboratory nonhydrostatic Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) indicated a broad, supercritical marine boundary layer moving to the south along central California and Point Sur during the aircraft flight. The marine boundary layer thinned and accelerated into the lee of Point Sur, which was the site of the fastest sea level wind speed along central California. Isotherms dip and speeds decreased in the lee of Point Sur in the capping inversion well above the marine layer. COAMPS forecasted a compression shock wave initiating off the upwind side of the topography behind Point Sur and other coastal points to the north. Evidence from the model and the aircraft supports the existence of an oblique hydraulic jump on the north side of Point Sur.
Abstract
A midlevel, coastally trapped atmospheric event occurred along the California coast 10–11 June 1994. This feature reversed the surface wind field along the coast in a northerly phase progression. Along the central California coast, the winds at the coastal stations reverse before the corresponding coastal buoy offshore, then followed hours later by passage of the leading edge of an overcast stratus cloud. The sea surface temperature was much colder in the narrow strip along the coast. The cloud characteristics may be accounted for by a sea surface mixed layer (SSML) model beginning with the wind reversal and growing with the square root of time. Heat is lost from the SSML to the sea surface. A cloud forms when the air temperature at the top of the SSML is equal to the dewpoint. It is suggested that a bore develops on the top of the SSML, increasing the thickness of the SSML and the progression speed of the cloud to 8 m s−1. There is evidence that an undular bore with a leading cloud develops in the thinner inshore SSML.
Advancing beyond Monterey Bay, horizontal density contrast is believed to have caused the bore to change character to a gravity current with a narrower cloud that passed a point inshore before the winds reversed at the buoys. The last trace of a disturbed boundary layer ended at Point Arena where strong northerly winds prevented any further northerly progression and contributed to a cyclonic eddy that was formed in the lee of the point.
Caution is suggested in the interpretation of stratus cloud phase progression without coastal wind measurements.
Abstract
A midlevel, coastally trapped atmospheric event occurred along the California coast 10–11 June 1994. This feature reversed the surface wind field along the coast in a northerly phase progression. Along the central California coast, the winds at the coastal stations reverse before the corresponding coastal buoy offshore, then followed hours later by passage of the leading edge of an overcast stratus cloud. The sea surface temperature was much colder in the narrow strip along the coast. The cloud characteristics may be accounted for by a sea surface mixed layer (SSML) model beginning with the wind reversal and growing with the square root of time. Heat is lost from the SSML to the sea surface. A cloud forms when the air temperature at the top of the SSML is equal to the dewpoint. It is suggested that a bore develops on the top of the SSML, increasing the thickness of the SSML and the progression speed of the cloud to 8 m s−1. There is evidence that an undular bore with a leading cloud develops in the thinner inshore SSML.
Advancing beyond Monterey Bay, horizontal density contrast is believed to have caused the bore to change character to a gravity current with a narrower cloud that passed a point inshore before the winds reversed at the buoys. The last trace of a disturbed boundary layer ended at Point Arena where strong northerly winds prevented any further northerly progression and contributed to a cyclonic eddy that was formed in the lee of the point.
Caution is suggested in the interpretation of stratus cloud phase progression without coastal wind measurements.
Abstract
This study uses a recently developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt (1 kt = 0.51 m s−1) or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the midtropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments.
Significance Statement
Accurately predicting tropical cyclone (TC) intensity change is challenging. This is particularly true for storms that undergo rapid intensity changes. Recent numerical modeling studies have suggested that vortex vertical alignment commonly precedes the onset of rapid intensification; however, this consensus is not unanimous. Until now, there has not been a systematic observational analysis of the relationship between vortex misalignment and TC intensity change. This study addresses this gap using a recently developed airborne radar database. We show that the degree of vortex misalignment is a useful predictor for TC intensity change, but primarily for weak storms. In these cases, more aligned TCs exhibit precipitation patterns that favor greater intensification rates. Future work should explore the causes of changes in vortex alignment.
Abstract
This study uses a recently developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt (1 kt = 0.51 m s−1) or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the midtropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments.
Significance Statement
Accurately predicting tropical cyclone (TC) intensity change is challenging. This is particularly true for storms that undergo rapid intensity changes. Recent numerical modeling studies have suggested that vortex vertical alignment commonly precedes the onset of rapid intensification; however, this consensus is not unanimous. Until now, there has not been a systematic observational analysis of the relationship between vortex misalignment and TC intensity change. This study addresses this gap using a recently developed airborne radar database. We show that the degree of vortex misalignment is a useful predictor for TC intensity change, but primarily for weak storms. In these cases, more aligned TCs exhibit precipitation patterns that favor greater intensification rates. Future work should explore the causes of changes in vortex alignment.
Abstract
As part of the NASA Earth Venture-Instrument program, the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission, to be launched in January 2022, will deliver unprecedented rapid-update microwave measurements over the tropics that can be used to observe the evolution of the precipitation and thermodynamic structure of tropical cyclones (TCs) at meso- and synoptic scales. TROPICS consists of six CubeSats, each hosting a passive microwave radiometer that provides radiance observations sensitive to atmospheric temperature, water vapor, precipitation, and precipitation-sized ice particles. In this study, the impact of TROPICS all-sky radiances on TC analyses and forecasts is explored through a regional mesoscale observing system simulation experiment (OSSE). The results indicate that the TROPICS all-sky radiances can have positive impacts on TC track and intensity forecasts, particularly when some hydrometeor state variables and other state variables of the data assimilation system that are relevant to cloudy radiance assimilation are updated. The largest impact on the model analyses is seen in the humidity fields, regardless of whether or not there are radiances assimilated from other satellites. TROPICS radiances demonstrate large impact on TC analyses and forecasts when other satellite radiances are absent. The assimilation of the all-sky TROPICS radiances without default radiances leads to a consistent improvement in the low- and midtropospheric temperature and wind forecasts throughout the 5-day forecasts, but only up to 36-h lead time in the humidity forecasts at all pressure levels. This study illustrates the potential benefits of TROPICS data assimilation for TC forecasts and provides a potentially streamlined pathway for transitioning TROPICS data from research to operations postlaunch.
Abstract
As part of the NASA Earth Venture-Instrument program, the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission, to be launched in January 2022, will deliver unprecedented rapid-update microwave measurements over the tropics that can be used to observe the evolution of the precipitation and thermodynamic structure of tropical cyclones (TCs) at meso- and synoptic scales. TROPICS consists of six CubeSats, each hosting a passive microwave radiometer that provides radiance observations sensitive to atmospheric temperature, water vapor, precipitation, and precipitation-sized ice particles. In this study, the impact of TROPICS all-sky radiances on TC analyses and forecasts is explored through a regional mesoscale observing system simulation experiment (OSSE). The results indicate that the TROPICS all-sky radiances can have positive impacts on TC track and intensity forecasts, particularly when some hydrometeor state variables and other state variables of the data assimilation system that are relevant to cloudy radiance assimilation are updated. The largest impact on the model analyses is seen in the humidity fields, regardless of whether or not there are radiances assimilated from other satellites. TROPICS radiances demonstrate large impact on TC analyses and forecasts when other satellite radiances are absent. The assimilation of the all-sky TROPICS radiances without default radiances leads to a consistent improvement in the low- and midtropospheric temperature and wind forecasts throughout the 5-day forecasts, but only up to 36-h lead time in the humidity forecasts at all pressure levels. This study illustrates the potential benefits of TROPICS data assimilation for TC forecasts and provides a potentially streamlined pathway for transitioning TROPICS data from research to operations postlaunch.
Abstract
As a part of the Tropical Cyclone Rapid Intensification Project (TCRI), observations were made of the rapid intensification of Hurricane Sally (2020) as it passed over the Gulf of Mexico. High-altitude dropsondes and radar observations from NOAA’s Gulfstream IV, radar observations from WP-3D aircraft, the WSR-88D ground radar network, satellite images, and satellite-detected lightning strikes are used to apply recently developed theoretical knowledge about tropical cyclone intensification. As observed in many other tropical cyclones, strong, bottom-heavy vertical mass flux profiles are correlated with low (but positive) values of low- to midlevel moist convective instability along with high column relative humidity. Such mass flux profiles produce rapid spinup at low levels and the environmental conditions giving rise to them are associated with an intense midlevel vortex. This low-level spinup underneath the midlevel vortex results in the vertical alignment of the vortex column, which is a key step in the rapid intensification process. In the case of Sally, the spinup of the low-level vortex resulted from vorticity stretching, while the spinup of the midlevel vortex at 6 km resulted from vorticity tilting produced by the interaction of convective ascent with moderate vertical shear.
Significance Statement
The purpose of this study is to investigate the rapid intensification of Hurricane Sally as it was approaching the Florida Panhandle. We do that by analyzing an unprecedented dataset from the NOAA WP-3D and Gulfstream-IV aircraft, together with ground-based radar and satellite data. We find that both the dynamics (vorticity structure and evolution) and thermodynamics (instability index, saturation fraction, heating/mass flux profiles) need to be considered in diagnosing intensification processes. Further field projects with continuous high-altitude dropsondes and research are needed to see if these are applicable to other reformation events as well as genesis.
Abstract
As a part of the Tropical Cyclone Rapid Intensification Project (TCRI), observations were made of the rapid intensification of Hurricane Sally (2020) as it passed over the Gulf of Mexico. High-altitude dropsondes and radar observations from NOAA’s Gulfstream IV, radar observations from WP-3D aircraft, the WSR-88D ground radar network, satellite images, and satellite-detected lightning strikes are used to apply recently developed theoretical knowledge about tropical cyclone intensification. As observed in many other tropical cyclones, strong, bottom-heavy vertical mass flux profiles are correlated with low (but positive) values of low- to midlevel moist convective instability along with high column relative humidity. Such mass flux profiles produce rapid spinup at low levels and the environmental conditions giving rise to them are associated with an intense midlevel vortex. This low-level spinup underneath the midlevel vortex results in the vertical alignment of the vortex column, which is a key step in the rapid intensification process. In the case of Sally, the spinup of the low-level vortex resulted from vorticity stretching, while the spinup of the midlevel vortex at 6 km resulted from vorticity tilting produced by the interaction of convective ascent with moderate vertical shear.
Significance Statement
The purpose of this study is to investigate the rapid intensification of Hurricane Sally as it was approaching the Florida Panhandle. We do that by analyzing an unprecedented dataset from the NOAA WP-3D and Gulfstream-IV aircraft, together with ground-based radar and satellite data. We find that both the dynamics (vorticity structure and evolution) and thermodynamics (instability index, saturation fraction, heating/mass flux profiles) need to be considered in diagnosing intensification processes. Further field projects with continuous high-altitude dropsondes and research are needed to see if these are applicable to other reformation events as well as genesis.