Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: D. R. Marsh x
  • Refine by Access: All Content x
Clear All Modify Search
Fabrizio Sassi
,
R. R. Garcia
,
D. Marsh
, and
K. W. Hoppel

Abstract

This paper compares present-day simulations made with two state-of-the-art climate models: a conventional model specifically designed to represent the tropospheric climate, which has a poorly resolved middle atmosphere, and a configuration that is built on the same physics and numerical algorithms but represents realistically the middle atmosphere and lower thermosphere. The atmospheric behavior is found to be different between the two model configurations, and it is shown that the differences in the two simulations can be attributed to differences in the behavior of the zonal mean state of the stratosphere, where reflection of quasi-stationary resolved planetary waves from the lid of the low-top model is prominent; the more realistic physics in the high-top model is not relevant. It is also shown that downward propagation of zonal wind anomalies during weak stratospheric vortex events is substantially different in the two model configurations. These findings extend earlier results that a poorly resolved stratosphere can influence simulations throughout the troposphere.

Full access
N. Calvo
,
R. R. Garcia
,
W. J. Randel
, and
D. R. Marsh

Abstract

The Brewer–Dobson circulation strengthens in the lowermost tropical stratosphere during warm El Niño–Southern Oscillation (ENSO) events. Dynamical analyses using the most recent version of the Whole Atmosphere Community Climate Model show that this is due mainly to anomalous forcing by orographic gravity waves, which maximizes in the Northern Hemisphere subtropics between 18 and 22 km, especially during the strongest warm ENSO episodes. Anomalies in the meridional gradient of temperature in the upper troposphere and lower stratosphere (UTLS) are produced during warm ENSO events, accompanied by anomalies in the location and intensity of the subtropical jets. This anomalous wind pattern alters the propagation and dissipation of the parameterized gravity waves, which ultimately force increases in tropical upwelling in the lowermost stratosphere. During cold ENSO events a similar signal, but of opposite sign, is present in the model simulations. The signals in ozone and water vapor produced by ENSO events in the UTLS are also investigated.

Full access
Andrea K. Eaton
,
Wayne R. Rouse
,
Peter M. Lafleur
,
Philip Marsh
, and
Peter D. Blanken

Abstract

In this study, the surface energy balance of 10 sites in the western and central Canadian subarctic is examined. Each research site is classified into one of five terrain types (lake, wetland, shrub tundra, upland tundra, and coniferous forest) using dominant vegetation type as an indicator of surface cover. Variations in the mean summertime values (15 June–25 August) of the energy balance partitioning, Bowen ratio (β), Priestley–Taylor alpha (α), and surface saturation deficit (D o ) are compared within and among terrain types. A clear correspondence between the energy balance characteristics and terrain type is found. In addition, an evaporative continuum from relatively wet to relatively dry is observed among terrain types. The shallow lake and wetland sites are relatively wet with high Q E /Q* (latent heat flux/net radiation), high α, low β, and low D o values. In contrast, the upland tundra and forest sites are relatively dry with low Q E /Q*, low α, high β, and high D o values.

Full access
A. C. Kren
,
D. R. Marsh
,
A. K. Smith
, and
P. Pilewskie

Abstract

The response of the Northern Hemisphere winter stratosphere to the Pacific decadal oscillation (PDO) is examined using the Whole Atmosphere Community Climate Model. A 200-yr preindustrial control simulation that includes fully interactive chemistry, ocean and sea ice, constant solar forcing, and greenhouse gases fixed to 1850 levels is analyzed. Based on principal component analysis, the PDO spatial pattern, frequency, and amplitude agree well with the observed PDO over the period 1900–2014. Consistent with previous studies, the positive phase of the PDO is marked by a strengthened Aleutian low and a wave train of geopotential height anomalies reminiscent of the Pacific–North American pattern in the troposphere. In addition to a tropospheric signal, a zonal-mean warming of about 2 K in the northern polar stratosphere and a zonal-mean zonal wind decrease of about 4 m s−1 in the PDO positive phase are found. When compositing PDO positive or negative winters during neutral El Niño years, the magnitude is reduced and depicts an early winter forcing of the stratosphere compared to a late winter response from El Niño. Contamination between PDO and ENSO signals is also discussed. Stratospheric sudden warmings occur 63% of the time in the PDO positive phase compared to 40% in the negative phase. Although this sudden warming frequency is not statistically significant, it is quantitatively consistent with NCEP–NCAR reanalysis data and recent observational evidence linking the PDO positive phase to weak stratospheric vortex events.

Full access
G. Chiodo
,
L. M. Polvani
,
D. R. Marsh
,
A. Stenke
,
W. Ball
,
E. Rozanov
,
S. Muthers
, and
K. Tsigaridis

Abstract

An accurate quantification of the stratospheric ozone feedback in climate change simulations requires knowledge of the ozone response to increased greenhouse gases. Here, an analysis is presented of the ozone layer response to an abrupt quadrupling of CO2 concentrations in four chemistry–climate models. The authors show that increased CO2 levels lead to a decrease in ozone concentrations in the tropical lower stratosphere, and an increase over the high latitudes and throughout the upper stratosphere. This pattern is robust across all models examined here, although important intermodel differences in the magnitude of the response are found. As a result of the cancellation between the upper- and lower-stratospheric ozone, the total column ozone response in the tropics is small, and appears to be model dependent. A substantial portion of the spread in the tropical column ozone is tied to intermodel spread in upwelling. The high-latitude ozone response is strongly seasonally dependent, and shows increases peaking in late winter and spring of each hemisphere, with prominent longitudinal asymmetries. The range of ozone responses to CO2 reported in this paper has the potential to induce significant radiative and dynamical effects on the simulated climate. Hence, these results highlight the need of using an ozone dataset consistent with CO2 forcing in models involved in climate sensitivity studies.

Full access
R. E. Stewart
,
H. G. Leighton
,
P. Marsh
,
G. W. K. Moore
,
H. Ritchie
,
W. R. Rouse
,
E. D. Soulis
,
G. S. Strong
,
R. W. Crawford
, and
B. Kochtubajda

The Mackenzie River is the largest North American source of freshwater for the Arctic Ocean. This basin is subjected to wide fluctuations in its climate and it is currently experiencing a pronounced warming trend. As a major Canadian contribution to the Global Energy and Water Cycle Experiment (GEWEX), the Mackenzie GEWEX Study (MAGS) is focusing on understanding and modeling the fluxes and reservoirs governing the flow of water and energy into and through the climate system of the Mackenzie River Basin. MAGS necessarily involves research into many atmospheric, land surface, and hydrological issues associated with cold climate systems. The overall objectives and scope of MAGS will be presented in this article.

Full access
D. J. McNaughton
,
N. E. Bowne
,
R. L. Dennis
,
R. R. Draxler
,
S. R. Hanna
,
T. Palma
,
S. L. Marsh
,
W. T. Pennell
,
R. L. Peterson
,
J. V. Ramsdell
,
S. T. Rao
, and
R. J. Yamartino

The Eighth Joint Conference on Applications of Air Pollution Meteorology with the Air and Waste Management Association was held in conjunction with the AMS 74th Annual Meeting in Nashville, Tennessee, on 23–28 January 1994. Sessions at the meeting covered a broad range of topics including the dispersion environment, meteorology in emissions determination, long-range and mesoscale pollutant transport and fate, meteorology and photochemistry, advanced dispersion models and modeling systems, model evaluation, complex flows affecting dispersion near structures, and coastal and complex terrain issues. Papers followed some recurrent themes but many reported applications of new technology that provide new opportunities to see atmospheric characteristics and complexities for the first time. Innovative techniques were described in data analysis and presentation and modeling.

Full access
James W. Hurrell
,
M. M. Holland
,
P. R. Gent
,
S. Ghan
,
Jennifer E. Kay
,
P. J. Kushner
,
J.-F. Lamarque
,
W. G. Large
,
D. Lawrence
,
K. Lindsay
,
W. H. Lipscomb
,
M. C. Long
,
N. Mahowald
,
D. R. Marsh
,
R. B. Neale
,
P. Rasch
,
S. Vavrus
,
M. Vertenstein
,
D. Bader
,
W. D. Collins
,
J. J. Hack
,
J. Kiehl
, and
S. Marshall

The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for Earth system studies, making it a true community tool. This article describes this Earth system model and its various possible configurations, and highlights a number of its scientific capabilities.

Full access

Energy and Water Cycles in a High-Latitude, North-Flowing River System

Summary of Results from the Mackenzie GEWEX Study—Phase I

W. R. Rouse
,
E. M. Blyth
,
R. W. Crawford
,
J. R. Gyakum
,
J. R. Janowicz
,
B. Kochtubajda
,
H. G. Leighton
,
P. Marsh
,
L. Martz
,
A. Pietroniro
,
H. Ritchie
,
W. M. Schertzer
,
E. D. Soulis
,
R. E. Stewart
,
G. S. Strong
, and
M. K. Woo

The MacKenzie Global Energy and Water Cycle Experiment (GEWEX) Study, Phase 1, seeks to improve understanding of energy and water cycling in the Mackenzie River basin (MRB) and to initiate and test atmospheric, hydrologic, and coupled models that will project the sensitivity of these cycles to climate change and to human activities. Major findings from the study are outlined in this paper. Absorbed solar radiation is a primary driving force of energy and water, and shows dramatic temporal and spatial variability. Cloud amounts feature large diurnal, seasonal, and interannual fluctuations. Seasonality in moisture inputs and outputs is pronounced. Winter in the northern MRB features deep thermal inversions. Snow hydrological processes are very significant in this high-latitude environment and are being successfully modeled for various landscapes. Runoff processes are distinctive in the major terrain units, which is important to overall water cycling. Lakes and wetlands compose much of MRB and are prominent as hydrologic storage systems that must be incorporated into models. Additionally, they are very efficient and variable evaporating systems that are highly sensitive to climate variability. Mountainous high-latitude sub-basins comprise a mosaic of land surfaces with distinct hydrological attributes that act as variable source areas for runoff generation. They also promote leeward cyclonic storm generation. The hard rock terrain of the Canadian Shield exhibits a distinctive energy flux regimen and hydrologic regime. The MRB has been warming dramatically recently, and ice breakup and spring outflow into the Polar Sea has been occurring progressively earlier. This paper presents initial results from coupled atmospheric-hydrologic modeling and delineates distinctive cold region inputs needed for developments in regional and global climate modeling.

Full access
John S. Kain
,
Michael C. Coniglio
,
James Correia
,
Adam J. Clark
,
Patrick T. Marsh
,
Conrad L. Ziegler
,
Valliappa Lakshmanan
,
Stuart D. Miller Jr.
,
Scott R. Dembek
,
Steven J. Weiss
,
Fanyou Kong
,
Ming Xue
,
Ryan A. Sobash
,
Andrew R. Dean
,
Israel L. Jirak
, and
Christopher J. Melick

The 2011 Spring Forecasting Experiment in the NOAA Hazardous Weather Testbed (HWT) featured a significant component on convection initiation (CI). As in previous HWT experiments, the CI study was a collaborative effort between forecasters and researchers, with equal emphasis on experimental forecasting strategies and evaluation of prototype model guidance products. The overarching goal of the CI effort was to identify the primary challenges of the CI forecasting problem and to establish a framework for additional studies and possible routine forecasting of CI. This study confirms that convection-allowing models with grid spacing ~4 km represent many aspects of the formation and development of deep convection clouds explicitly and with predictive utility. Further, it shows that automated algorithms can skillfully identify the CI process during model integration. However, it also reveals that automated detection of individual convection cells, by itself, provides inadequate guidance for the disruptive potential of deep convection activity. Thus, future work on the CI forecasting problem should be couched in terms of convection-event prediction rather than detection and prediction of individual convection cells.

Full access