Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Dale R. Durran x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Dale R. Durran

Abstract

When extreme weather occurs, the question often arises whether the event was produced by climate change. Two types of errors are possible when attempting to answer this question. One type of error is underestimating the role of climate change, thereby failing to properly alert the public and appropriately stimulate efforts at adaptation and mitigation. The second type of error is overestimating the role of climate change, thereby elevating climate anxiety and potentially derailing important public discussions with false alarms. Long before societal concerns about global warming became widespread, meteorologists were addressing essentially the same trade-off when faced with a binary decision of whether to issue a warning for hazardous weather. Here we review forecast–verification statistics such as the probability of detection (POD) and the false alarm ratio (FAR) for hazardous-weather warnings and examine their potential application to extreme-event attribution in connection with climate change. Empirical and theoretical evidence suggests that adjusting tornado-warning thresholds in an attempt to reduce FAR produces even larger reductions in POD. Similar tradeoffs between improving FAR and degrading POD are shown to apply using a rubric for the attribution of extreme high temperatures to climate change. Although there are obviously significant differences between the issuance of hazardous-weather warnings and the attribution of extreme events to global warming, the experiences of the weather forecasting community can provide qualitative guidance for those attempting to set practical thresholds for extreme-event attribution in a changing climate.

Free access
Dale R. Durran
Full access
Dale R. Durran

It is demonstrated that the inertial oscillation is not produced exclusively by “inertial forces,” and that the inertial oscillation appears as oscillatory motion even when viewed from a nonrotating frame of reference. The component of true gravity parallel to the geopotential surfaces plays a central role in forcing the inertial oscillation, and in particular it is the only force driving the oscillation in the nonrotating reference frame.

Full access
Dale R. Durran
and
Jonathan A. Weyn

Abstract

One important limitation on the accuracy of weather forecasts is imposed by unavoidable errors in the specification of the atmosphere’s initial state. Much theoretical concern has been focused on the limits to predictability imposed by small-scale errors, potentially even those on the scale of a butterfly. Very modest errors at much larger scales may nevertheless pose a more important practical limitation. We demonstrate the importance of large-scale uncertainty by analyzing ensembles of idealized squall-line simulations. Our results imply that minimizing initial errors on scales around 100 km is more likely to extend the accuracy of forecasts at lead times longer than 3–4 h than efforts to minimize initial errors on much smaller scales. These simulations also demonstrate that squall lines, triggered in a horizontally homogeneous environment with no initial background circulations, can generate a background mesoscale kinetic energy spectrum roughly similar to that observed in the atmosphere.

Full access