Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Dale R. Durran x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Dale R. Durran

It is demonstrated that the inertial oscillation is not produced exclusively by “inertial forces,” and that the inertial oscillation appears as oscillatory motion even when viewed from a nonrotating frame of reference. The component of true gravity parallel to the geopotential surfaces plays a central role in forcing the inertial oscillation, and in particular it is the only force driving the oscillation in the nonrotating reference frame.

Full access
Dale R. Durran
Full access
Dale R. Durran
and
Jonathan A. Weyn

Abstract

One important limitation on the accuracy of weather forecasts is imposed by unavoidable errors in the specification of the atmosphere’s initial state. Much theoretical concern has been focused on the limits to predictability imposed by small-scale errors, potentially even those on the scale of a butterfly. Very modest errors at much larger scales may nevertheless pose a more important practical limitation. We demonstrate the importance of large-scale uncertainty by analyzing ensembles of idealized squall-line simulations. Our results imply that minimizing initial errors on scales around 100 km is more likely to extend the accuracy of forecasts at lead times longer than 3–4 h than efforts to minimize initial errors on much smaller scales. These simulations also demonstrate that squall lines, triggered in a horizontally homogeneous environment with no initial background circulations, can generate a background mesoscale kinetic energy spectrum roughly similar to that observed in the atmosphere.

Full access