Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Daniel Sempere Torres x
- Journal of Applied Meteorology and Climatology x
- Refine by Access: All Content x
Abstract
A general phenomenological formulation for drop size distribution (DSD), written down as a scaling law, is proposed. It accounts for all previous fitted DSDs. As a main implication of the expression proposed, the integral rainfall variables are related by power functions and agree with experimental evidence. Additional consequences are also analyzed. From this formulation there follows a general methodology for scaling all data in a unique plot, leading to more robust fits of the DSD. An illustrative example on real data is provided.
Abstract
A general phenomenological formulation for drop size distribution (DSD), written down as a scaling law, is proposed. It accounts for all previous fitted DSDs. As a main implication of the expression proposed, the integral rainfall variables are related by power functions and agree with experimental evidence. Additional consequences are also analyzed. From this formulation there follows a general methodology for scaling all data in a unique plot, leading to more robust fits of the DSD. An illustrative example on real data is provided.
Abstract
Normalization of drop size distributions (DSDs) is reexamined here. First, an extension of the scaling normalization that uses one moment of the DSD as a scaling parameter to a more general scaling normalization that uses two moments as scaling parameters of the normalization is presented. In addition, the proposed formulation includes all two-parameter normalizations recently introduced in the literature. Thus, a unified vision of the question of DSD normalization and a good model representation of DSDs are given. Data analysis of some convective and stratiform DSDs shows that, from the point of view of the compact representation of DSDs, the double-moment normalization is preferred. However, in terms of physical interpretation, the scaling exponent of the single-moment normalization clearly indicates two different rain regimes, whereas in the double-moment normalization the two populations are not readily separated. It is also shown that DSD analytical models (exponential, gamma, and generalized gamma DSD) have the same scaling properties, indicating that the scaling formalism of DSDs is a very general way of describing DSDs.
Abstract
Normalization of drop size distributions (DSDs) is reexamined here. First, an extension of the scaling normalization that uses one moment of the DSD as a scaling parameter to a more general scaling normalization that uses two moments as scaling parameters of the normalization is presented. In addition, the proposed formulation includes all two-parameter normalizations recently introduced in the literature. Thus, a unified vision of the question of DSD normalization and a good model representation of DSDs are given. Data analysis of some convective and stratiform DSDs shows that, from the point of view of the compact representation of DSDs, the double-moment normalization is preferred. However, in terms of physical interpretation, the scaling exponent of the single-moment normalization clearly indicates two different rain regimes, whereas in the double-moment normalization the two populations are not readily separated. It is also shown that DSD analytical models (exponential, gamma, and generalized gamma DSD) have the same scaling properties, indicating that the scaling formalism of DSDs is a very general way of describing DSDs.