Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Dariusz B. Baranowski x
  • DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation x
  • Refine by Access: All Content x
Clear All Modify Search
Adrian J. Matthews
,
Dariusz B. Baranowski
,
Karen J. Heywood
,
Piotr J. Flatau
, and
Sunke Schmidtko

Abstract

A surface diurnal warm layer is diagnosed from Seaglider observations and develops on half of the days in the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the Madden–Julian Oscillation (CINDY/DYNAMO) Indian Ocean experiment. The diurnal warm layer occurs on days of high solar radiation flux (>80 W m−2) and low wind speed (<6 m s−1) and preferentially in the inactive stage of the Madden–Julian oscillation. Its diurnal harmonic has an exponential vertical structure with a depth scale of 4–5 m (dependent on chlorophyll concentration), consistent with forcing by absorption of solar radiation. The effective sea surface temperature (SST) anomaly due to the diurnal warm layer often reaches 0.8°C in the afternoon, with a daily mean of 0.2°C, rectifying the diurnal cycle onto longer time scales. This SST anomaly drives an anomalous flux of 4 W m−2 that cools the ocean. Alternatively, in a climate model where this process is unresolved, this represents an erroneous flux that warms the ocean. A simple model predicts a diurnal warm layer to occur on 30%–50% of days across the tropical warm pool. On the remaining days, with low solar radiation and high wind speeds, a residual diurnal cycle is observed by the Seaglider, with a diurnal harmonic of temperature that decreases linearly with depth. As wind speed increases, this already weak temperature gradient decreases further, tending toward isothermal conditions.

Full access
Sue Chen
,
Maria Flatau
,
Tommy G. Jensen
,
Toshiaki Shinoda
,
Jerome Schmidt
,
Paul May
,
James Cummings
,
Ming Liu
,
Paul E. Ciesielski
,
Christopher W. Fairall
,
Ren-Chieh Lien
,
Dariusz B. Baranowski
,
Nan-Hsun Chi
,
Simon de Szoeke
, and
James Edson

Abstract

The diurnal variability and the environmental conditions that support the moisture resurgence of MJO events observed during the Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/DYNAMO campaign in October–December 2011 are investigated using in situ observations and the cloud-resolving fully air–ocean–wave Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Spectral density and wavelet analysis of the total precipitable water (TPW) constructed from the DYNAMO soundings and TRMM satellite precipitation reveal a deep layer of vapor resurgence during the observed Wheeler and Hendon real-time multivariate MJO index phases 5–8 (MJO suppressed phase), which include diurnal, quasi-2-, quasi-3–4-, quasi-6–8-, and quasi-16-day oscillations. A similar oscillatory pattern is found in the DYNAMO moorings sea surface temperature analysis, suggesting a tightly coupled atmosphere and ocean system during these periods. COAMPS hindcast focused on the 12–16 November 2011 event suggests that both the diurnal sea surface temperature (SST) pumping and horizontal and vertical moisture transport associated with the westward propagating mixed Rossby–Gravity (MRG) waves play an essential role in the moisture resurgence during this period. Idealized COAMPS simulations of MRG waves are used to estimate the MRG and diurnal SST contributions to the overall moisture increase. These idealized MRG sensitivity experiments showed the TPW increase varies from 9% to 13% with the largest changes occurring in the simulations that included a diurnal SST variation of 2.5°C as observed.

Full access