Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: David A. Lavers x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
David A. Lavers
,
Ervin Zsoter
,
David S. Richardson
, and
Florian Pappenberger

Abstract

Early awareness of extreme precipitation can provide the time necessary to make adequate event preparations. At the European Centre for Medium-Range Weather Forecasts (ECMWF), one tool that condenses the forecast information from the Integrated Forecasting System ensemble (ENS) is the extreme forecast index (EFI), an index that highlights regions that are forecast to have potentially anomalous weather conditions compared to the local climate. This paper builds on previous findings by undertaking a global verification throughout the medium-range forecast horizon (out to 15 days) on the ability of the EFI for water vapor transport [integrated vapor transport (IVT)] and precipitation to capture extreme observed precipitation. Using the ECMWF ENS for winters 2015/16 and 2016/17 and daily surface precipitation observations, the relative operating characteristic is used to show that the IVT EFI is more skillful than the precipitation EFI in forecast week 2 over Europe and western North America. It is the large-scale nature of the IVT, its higher predictability, and its relationship with extreme precipitation that result in its potential usefulness in these regions, which, in turn, could provide earlier awareness of extreme precipitation. Conversely, at shorter lead times the precipitation EFI is more useful, although the IVT EFI can provide synoptic-scale understanding. For the whole globe, the extratropical Northern Hemisphere, the tropics, and North America, the precipitation EFI is more useful throughout the medium range, suggesting that precipitation processes not captured in the IVT are important (e.g., tropical convection). Following these results, the operational implementation of the IVT EFI is currently being planned.

Full access
Timothy B. Higgins
,
Aneesh C. Subramanian
,
Will E. Chapman
,
David A. Lavers
, and
Andrew C. Winters

Abstract

Accurate forecasts of weather conditions have the potential to mitigate the social and economic damages they cause. To make informed decisions based on forecasts, it is important to determine the extent to which they could be skillful. This study focuses on subseasonal forecasts out to a lead time of four weeks. We examine the differences between the potential predictability, which is computed under the assumption of a “perfect model,” of integrated vapor transport (IVT) and precipitation under extreme conditions in subseasonal forecasts across the northeast Pacific. Our results demonstrate significant forecast skill of extreme IVT and precipitation events (exceeding the 90th percentile) into week 4 for specific areas, particularly when anomalously wet conditions are observed in the true model state. This forecast skill during weeks 3 and 4 is closely associated with a zonal extension of the North Pacific jet. These findings of the source of skillful subseasonal forecasts over the U.S. West Coast could have implications for water management in these regions susceptible to drought and flooding extremes. Additionally, they may offer valuable insights for governments and industries on the U.S. West Coast seeking to make informed decisions based on extended weather prediction.

Significance Statement

The purpose of this study is to understand the differences between the ability to predict high amounts of the transport of water vapor and precipitation over the North Pacific 3 and 4 weeks into the future. The results indicate that differences do exist in a region that is relevant to precipitation on the U.S. West Coast. To physically explain why differences in predictability exist, the relationship between weekly extremes of the extension of the jet stream, IVT, and precipitation over the North Pacific is explored. These findings may impact decisions relevant to water management on the U.S. West Coast susceptible to drought and flooding extremes.

Restricted access
David A. Lavers
,
N. Bruce Ingleby
,
Aneesh C. Subramanian
,
David S. Richardson
,
F. Martin Ralph
,
James D. Doyle
,
Carolyn A. Reynolds
,
Ryan D. Torn
,
Mark J. Rodwell
,
Vijay Tallapragada
, and
Florian Pappenberger

Abstract

A key aim of observational campaigns is to sample atmosphere–ocean phenomena to improve understanding of these phenomena, and in turn, numerical weather prediction. In early 2018 and 2019, the Atmospheric River Reconnaissance (AR Recon) campaign released dropsondes and radiosondes into atmospheric rivers (ARs) over the northeast Pacific Ocean to collect unique observations of temperature, winds, and moisture in ARs. These narrow regions of water vapor transport in the atmosphere—like rivers in the sky—can be associated with extreme precipitation and flooding events in the midlatitudes. This study uses the dropsonde observations collected during the AR Recon campaign and the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) to evaluate forecasts of ARs. Results show that ECMWF IFS forecasts 1) were colder than observations by up to 0.6 K throughout the troposphere; 2) have a dry bias in the lower troposphere, which along with weaker winds below 950 hPa, resulted in weaker horizontal water vapor fluxes in the 950–1000-hPa layer; and 3) exhibit an underdispersiveness in the water vapor flux that largely arises from model representativeness errors associated with dropsondes. Four U.S. West Coast radiosonde sites confirm the IFS cold bias throughout winter. These issues are likely to affect the model’s hydrological cycle and hence precipitation forecasts.

Open access
Laurel L. DeHaan
,
Anna M. Wilson
,
Brian Kawzenuk
,
Minghua Zheng
,
Luca Delle Monache
,
Xingren Wu
,
David A. Lavers
,
Bruce Ingleby
,
Vijay Tallapragada
,
Florian Pappenberger
, and
F. Martin Ralph

Abstract

Atmospheric River Reconnaissance has held field campaigns during cool seasons since 2016. These campaigns have provided thousands of dropsonde data profiles, which are assimilated into multiple global operational numerical weather prediction models. Data denial experiments, conducted by running a parallel set of forecasts that exclude the dropsonde information, allow testing of the impact of the dropsonde data on model analyses and the subsequent forecasts. Here, we investigate the differences in skill between the control forecasts (with dropsonde data assimilated) and denial forecasts (without dropsonde data assimilated) in terms of both precipitation and integrated vapor transport (IVT) at multiple thresholds. The differences are considered in the times and locations where there is a reasonable expectation of influence of an intensive observation period (IOP). Results for 2019 and 2020 from both the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Centers for Environmental Prediction (NCEP) global model show improvements with the added information from the dropsondes. In particular, significant improvements in the control forecast IVT generally occur in both models, especially at higher values. Significant improvements in the control forecast precipitation also generally occur in both models, but the improvements vary depending on the lead time and metrics used.

Significance Statement

Atmospheric River Reconnaissance is a program that uses targeted aircraft flights over the northeast Pacific to take measurements of meteorological fields. These data are then ingested into global weather models with the intent of improving the initial conditions and resulting forecasts along the U.S. West Coast. The impacts of these observations on two global numerical weather models were investigated to determine their influence on the forecasts. The integrated vapor transport, a measure of both wind and humidity, saw significant improvements in both models with the additional observations. Precipitation forecasts were also improved, but with differing results between the two models.

Restricted access
Alison Cobb
,
F. Martin Ralph
,
Vijay Tallapragada
,
Anna M. Wilson
,
Christopher A. Davis
,
Luca Delle Monache
,
James D. Doyle
,
Florian Pappenberger
,
Carolyn A. Reynolds
,
Aneesh Subramanian
,
Peter G. Black
,
Forest Cannon
,
Chris Castellano
,
Jason M. Cordeira
,
Jennifer S. Haase
,
Chad Hecht
,
Brian Kawzenuk
,
David A. Lavers
,
Michael J. Murphy Jr.
,
Jack Parrish
,
Ryan Rickert
,
Jonathan J. Rutz
,
Ryan Torn
,
Xingren Wu
, and
Minghua Zheng

Abstract

Atmospheric River Reconnaissance (AR Recon) is a targeted campaign that complements other sources of observational data, forming part of a diverse observing system. AR Recon 2021 operated for ten weeks from January 13 to March 22, with 29.5 Intensive Observation Periods (IOPs), 45 flights and 1142 successful dropsondes deployed in the northeast Pacific. With the availability of two WC-130J aircraft operated by the 53rd Weather Reconnaissance Squadron (53 WRS), Air Force Reserve Command (AFRC) and one National Oceanic and Atmospheric Administration (NOAA) Aircraft Operations Center (AOC) G-IVSP aircraft, six sequences were accomplished, in which the same synoptic system was sampled over several days.

The principal aim was to gather observations to improve forecasts of landfalling atmospheric rivers on the U.S. West Coast. Sampling of other meteorological phenomena forecast to have downstream impacts over the U.S. was also considered. Alongside forecast improvement, observations were also gathered to address important scientific research questions, as part of a Research and Operations Partnership.

Targeted dropsonde observations were focused on essential atmospheric structures, primarily atmospheric rivers. Adjoint and ensemble sensitivities, mainly focusing on predictions of U.S. West Coast precipitation, provided complementary information on locations where additional observations may help to reduce the forecast uncertainty. Additionally, Airborne Radio Occultation (ARO) and tail radar were active during some flights, 30 drifting buoys were distributed, and 111 radiosondes were launched from four locations in California. Dropsonde, radiosonde and buoy data were available for assimilation in real-time into operational forecast models. Future work is planned to examine the impact of AR Recon 2021 data on model forecasts.

Full access