Search Results
Abstract
Past numerical simulation studies found that debris loading from sand-sized particles may substantially affect tornado dynamics, causing reductions in near-surface wind speeds up to 50%. To further examine debris loading effects, simulations are performed using a large-eddy simulation model with a two-way drag force coupling between air and sand. Simulations encompass a large range of surface debris fluxes that cause negligible to substantial impact on tornado dynamics for a high-swirl tornado vortex simulation.
Simulations are considered for a specific case with a single vortex flow type (swirl ratio, intensity, and translation velocity) and a fixed set of debris and aerodynamic parameters. Thus, it is stressed that these findings apply to the specific flow and debris parameters herein and would likely vary for different flows or debris parameters. For this specific case, initial surface debris fluxes are varied over a factor of 16 384, and debris cloud mass varies by only 42% of this range because a negative feedback reduces near-surface horizontal velocities. Debris loading effects on the axisymmetric mean flow are evident when maximum debris loading exceeds 0.1 kg kg−1, but instantaneous maximum wind speed and TKE exhibit small changes at smaller debris loadings (greater than 0.01 kg kg−1). Initially, wind speeds are reduced in a shallow, near-surface layer, but the magnitude and depth of these changes increases with higher debris loading. At high debris loading, near-surface horizontal wind speeds are reduced by 30%–60% in the lowest 10 m AGL. In moderate and high debris loading scenarios, the number and intensity of subvortices also decrease close to the surface.
Abstract
Past numerical simulation studies found that debris loading from sand-sized particles may substantially affect tornado dynamics, causing reductions in near-surface wind speeds up to 50%. To further examine debris loading effects, simulations are performed using a large-eddy simulation model with a two-way drag force coupling between air and sand. Simulations encompass a large range of surface debris fluxes that cause negligible to substantial impact on tornado dynamics for a high-swirl tornado vortex simulation.
Simulations are considered for a specific case with a single vortex flow type (swirl ratio, intensity, and translation velocity) and a fixed set of debris and aerodynamic parameters. Thus, it is stressed that these findings apply to the specific flow and debris parameters herein and would likely vary for different flows or debris parameters. For this specific case, initial surface debris fluxes are varied over a factor of 16 384, and debris cloud mass varies by only 42% of this range because a negative feedback reduces near-surface horizontal velocities. Debris loading effects on the axisymmetric mean flow are evident when maximum debris loading exceeds 0.1 kg kg−1, but instantaneous maximum wind speed and TKE exhibit small changes at smaller debris loadings (greater than 0.01 kg kg−1). Initially, wind speeds are reduced in a shallow, near-surface layer, but the magnitude and depth of these changes increases with higher debris loading. At high debris loading, near-surface horizontal wind speeds are reduced by 30%–60% in the lowest 10 m AGL. In moderate and high debris loading scenarios, the number and intensity of subvortices also decrease close to the surface.
Abstract
Techniques to mitigate analysis errors arising from the nonsimultaneity of data collections typically use advection-correction procedures based on the hypothesis (frozen turbulence) that the analyzed field can be represented as a pattern of unchanging form in horizontal translation. It is more difficult to advection correct the radial velocity than the reflectivity because even if the vector velocity field satisfies this hypothesis, its radial component does not—but that component does satisfy a second-derivative condition. We treat the advection correction of the radial velocity (υ r ) as a variational problem in which errors in that second-derivative condition are minimized subject to smoothness constraints on spatially variable pattern-translation components (U, V). The Euler–Lagrange equations are derived, and an iterative trajectory-based solution is developed in which U, V, and υ r are analyzed together. The analysis code is first verified using analytical data, and then tested using Atmospheric Imaging Radar (AIR) data from a band of heavy rainfall on 4 September 2018 near El Reno, Oklahoma, and a decaying tornado on 27 May 2015 near Canadian, Texas. In both cases, the analyzed υ r field has smaller root-mean-square errors and larger correlation coefficients than in analyses based on persistence, linear time interpolation, or advection correction using constant U and V. As some experimentation is needed to obtain appropriate parameter values, the procedure is more suitable for non-real-time applications than use in an operational setting. In particular, the degree of spatial variability in U and V, and the associated errors in the analyzed υ r field are strongly dependent on a smoothness parameter.
Abstract
Techniques to mitigate analysis errors arising from the nonsimultaneity of data collections typically use advection-correction procedures based on the hypothesis (frozen turbulence) that the analyzed field can be represented as a pattern of unchanging form in horizontal translation. It is more difficult to advection correct the radial velocity than the reflectivity because even if the vector velocity field satisfies this hypothesis, its radial component does not—but that component does satisfy a second-derivative condition. We treat the advection correction of the radial velocity (υ r ) as a variational problem in which errors in that second-derivative condition are minimized subject to smoothness constraints on spatially variable pattern-translation components (U, V). The Euler–Lagrange equations are derived, and an iterative trajectory-based solution is developed in which U, V, and υ r are analyzed together. The analysis code is first verified using analytical data, and then tested using Atmospheric Imaging Radar (AIR) data from a band of heavy rainfall on 4 September 2018 near El Reno, Oklahoma, and a decaying tornado on 27 May 2015 near Canadian, Texas. In both cases, the analyzed υ r field has smaller root-mean-square errors and larger correlation coefficients than in analyses based on persistence, linear time interpolation, or advection correction using constant U and V. As some experimentation is needed to obtain appropriate parameter values, the procedure is more suitable for non-real-time applications than use in an operational setting. In particular, the degree of spatial variability in U and V, and the associated errors in the analyzed υ r field are strongly dependent on a smoothness parameter.