Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: David H. Levinson x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Michael C. Kruk
,
Ethan J. Gibney
,
David H. Levinson
, and
Michael Squires

Abstract

Tropical cyclones pose a significant threat to life and property along coastal regions of the United States. As these systems move inland and dissipate, they can also pose a threat to life and property, through heavy rains, high winds, and other severe weather such as tornadoes. While many studies have focused on the impacts from tropical cyclones on coastal counties of the United States, this study goes beyond the coast and examines the impacts caused by tropical cyclones on inland locations. Using geographical information system software, historical track data are used in conjunction with the radial maximum extent of the maximum sustained winds at 34-, 50-, and 64-kt (1 kt ≈ 0.5 m s−1) thresholds for all intensities of tropical cyclones and overlaid on a 30-km equal-area grid that covers the eastern half of the United States. The result is a series of maps with frequency distributions and an estimation of return intervals for inland tropical storm– and hurricane-force winds. Knowing where the climatologically favored areas are for tropical cyclones, combined with a climatological expectation of the inland penetration frequency of these storms, can be of tremendous value to forecasters, emergency managers, and the public.

Full access
Robert M. Banta
,
Lisa S. Darby
,
Pirmin Kaufmann
,
David H. Levinson
, and
Cui-Juan Zhu

Abstract

Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in the canyon was in the opposite direction from the flow above the canyon rim; 2) under strong, gusty flow from the southwest, the flow inside and above the canyon was from a similar direction and coupled; and 3) under light large-scale ambient flow, the lidar found evidence of local, thermally forced up- and down-canyon winds in the bottom of the canyon.

On the days with flow reversal in the canyon, the strongest in-canyon flow response was found for days with northwesterly flow and a strong inversion at the canyon rim. The aerosol backscatter profiles were well mixed within the canyon but poorly mixed across the rim because of the inversion. The gusty southwest flow days showed strong evidence of vertical mixing across the rim both in the momentum and in the aerosol backscatter profiles, as one would expect in turbulent flow. The days with light ambient flow showed poor vertical mixing even inside the canyon, where the jet of down-canyon flow in the bottom of the canyon at night was often either cleaner or dirtier than the air in the upper portions of the canyon. In a case study presented, the light ambient flow regime ended with an intrusion of polluted, gusty, southwesterly flow. The polluted, high-backscatter air took several hours to mix into the upper parts of the canyon. An example is also given of high-backscatter air in the upper portions of the canyon being mixed rapidly down into a jet of cleaner air in the bottom of the canyon in just a few minutes.

Full access