Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: David Hall x
  • The 1st NOAA Workshop on Leveraging AI in the Exploitation of Satellite Earth Observations & Numerical Weather Prediction x
  • Refine by Access: All Content x
Clear All Modify Search
Christina Kumler-Bonfanti
,
Jebb Stewart
,
David Hall
, and
Mark Govett

Abstract

Extracting valuable information from large sets of diverse meteorological data is a time-intensive process. Machine-learning methods can help to improve both speed and accuracy of this process. Specifically, deep-learning image-segmentation models using the U-Net structure perform faster and can identify areas that are missed by more restrictive approaches, such as expert hand-labeling and a priori heuristic methods. This paper discusses four different state-of-the-art U-Net models designed for detection of tropical and extratropical cyclone regions of interest (ROI) from two separate input sources: total precipitable water output from the Global Forecast System (GFS) model and water vapor radiance images from the Geostationary Operational Environmental Satellite (GOES). These models are referred to as International Best Track Archive for Climate Stewardship (IBTrACS)-GFS, Heuristic-GFS, IBTrACS-GOES, and Heuristic-GOES. All four U-Nets are fast information extraction tools and perform with an ROI detection accuracy ranging from 80% to 99%. These are additionally evaluated with the Dice and Tversky intersection-over-union (IoU) metrics, having Dice coefficient scores ranging from 0.51 to 0.76 and Tversky coefficients ranging from 0.56 to 0.74. The extratropical cyclone U-Net model performed 3 times as fast as the comparable heuristic model used to detect the same ROI. The U-Nets were specifically selected for their capabilities in detecting cyclone ROI beyond the scope of the training labels. These machine-learning models identified more ambiguous and active ROI missed by the heuristic model and hand-labeling methods that are commonly used in generating real-time weather alerts, having a potentially direct impact on public safety.

Full access
Sid-Ahmed Boukabara
,
Vladimir Krasnopolsky
,
Stephen G. Penny
,
Jebb Q. Stewart
,
Amy McGovern
,
David Hall
,
John E. Ten Hoeve
,
Jason Hickey
,
Hung-Lung Allen Huang
,
John K. Williams
,
Kayo Ide
,
Philippe Tissot
,
Sue Ellen Haupt
,
Kenneth S. Casey
,
Nikunj Oza
,
Alan J. Geer
,
Eric S. Maddy
, and
Ross N. Hoffman

Abstract

Promising new opportunities to apply artificial intelligence (AI) to the Earth and environmental sciences are identified, informed by an overview of current efforts in the community. Community input was collected at the first National Oceanic and Atmospheric Administration (NOAA) workshop on “Leveraging AI in the Exploitation of Satellite Earth Observations and Numerical Weather Prediction” held in April 2019. This workshop brought together over 400 scientists, program managers, and leaders from the public, academic, and private sectors in order to enable experts involved in the development and adaptation of AI tools and applications to meet and exchange experiences with NOAA experts. Paths are described to actualize the potential of AI to better exploit the massive volumes of environmental data from satellite and in situ sources that are critical for numerical weather prediction (NWP) and other Earth and environmental science applications. The main lessons communicated from community input via active workshop discussions and polling are reported. Finally, recommendations are presented for both scientists and decision-makers to address some of the challenges facing the adoption of AI across all Earth science.

Open access