Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: David Hall x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Klaus Keller
,
Curtis Deutsch
,
Matthew G. Hall
, and
David F. Bradford

Abstract

Many climate models predict that anthropogenic greenhouse gas emissions may cause a threshold response of the North Atlantic meridional overturning circulation (MOC). These model predictions are, however, uncertain. Reducing this uncertainty can have an economic value, because it would allow for the design of more efficient risk management strategies. Early information about the MOC sensitivity to anthropogenic forcing (i.e., information that arrives before the system is committed to a threshold response) could be especially valuable. Here the focus is on one particular kind of information: the detection of anthropogenic MOC changes. It is shown that an MOC observation system based on infrequent (decadal scale) hydrographic observations may well fail in the task of early MOC change detection. This is because this system observes too infrequently and the observation errors are too large. More frequent observations and reduced observation errors would result in earlier detection. It is also shown that the economic value of information associated with a confident and early prediction of an MOC threshold response could exceed the costs of typically implemented ocean observation systems by orders of magnitude. One open challenge is to identify a feasible observation system that would enable such a confident and early MOC prediction across the range of possible MOC responses.

Full access
Neil Berg
,
Alex Hall
,
Fengpeng Sun
,
Scott Capps
,
Daniel Walton
,
Baird Langenbrunner
, and
David Neelin

Abstract

A new hybrid statistical–dynamical downscaling technique is described to project mid- and end-of-twenty-first-century local precipitation changes associated with 36 global climate models (GCMs) in phase 5 of the Coupled Model Intercomparison Project archive over the greater Los Angeles region. Land-averaged precipitation changes, ensemble-mean changes, and the spread of those changes for both time slices are presented. It is demonstrated that the results are similar to what would be produced if expensive dynamical downscaling techniques were instead applied to all GCMs. Changes in land-averaged ensemble-mean precipitation are near zero for both time slices, reflecting the region’s typical position in the models at the node of oppositely signed large-scale precipitation changes. For both time slices, the intermodel spread of changes is only about 0.2–0.4 times as large as natural interannual variability in the baseline period. A caveat to these conclusions is that interannual variability in the tropical Pacific is generally regarded as a weakness of the GCMs. As a result, there is some chance the GCM responses in the tropical Pacific to a changing climate and associated impacts on Southern California precipitation are not credible. It is subjectively judged that this GCM weakness increases the uncertainty of regional precipitation change, perhaps by as much as 25%. Thus, it cannot be excluded that the possibility that significant regional adaptation challenges related to either a precipitation increase or decrease would arise. However, the most likely downscaled outcome is a small change in local mean precipitation compared to natural variability, with large uncertainty on the sign of the change.

Full access
Jesse Norris
,
Alex Hall
,
J. David Neelin
,
Chad W. Thackeray
, and
Di Chen

Abstract

Daily and subdaily precipitation extremes in historical phase 6 of the Coupled Model Intercomparison Project (CMIP6) simulations are evaluated against satellite-based observational estimates. Extremes are defined as the precipitation amount exceeded every x years, ranging from 0.01 to 10, encompassing the rarest events that are detectable in the observational record without noisy results. With increasing temporal resolution there is an increased discrepancy between models and observations: for daily extremes, the multimodel median underestimates the highest percentiles by about a third, and for 3-hourly extremes by about 75% in the tropics. The novelty of the current study is that, to understand the model spread, we evaluate the 3D structure of the atmosphere when extremes occur. In midlatitudes, where extremes are simulated predominantly explicitly, the intuitive relationship exists whereby higher-resolution models produce larger extremes (r = −0.49), via greater vertical velocity. In the tropics, the convective fraction (the fraction of precipitation simulated directly from the convective scheme) is more relevant. For models below 60% convective fraction, precipitation amount decreases with convective fraction (r = −0.63), but above 75% convective fraction, this relationship breaks down. In the lower-convective-fraction models, there is more moisture in the lower troposphere, closer to saturation. In the higher-convective-fraction models, there is deeper convection and higher cloud tops, which appears to be more physical. Thus, the low-convective models are mostly closer to the observations of extreme precipitation in the tropics, but likely for the wrong reasons. These intermodel differences in the environment in which extremes are simulated hold clues into how parameterizations could be modified in general circulation models to produce more credible twenty-first-century projections.

Full access
Alex Hall
,
Amy Clement
,
David W. J. Thompson
,
Anthony Broccoli
, and
Charles Jackson

Abstract

Milankovitch proposed that variations in the earth’s orbit cause climate variability through a local thermodynamic response to changes in insolation. This hypothesis is tested by examining variability in an atmospheric general circulation model coupled to an ocean mixed layer model subjected to the orbital forcing of the past 165 000 yr. During Northern Hemisphere summer, the model’s response conforms to Milankovitch’s hypothesis, with high (low) insolation generating warm (cold) temperatures throughout the hemisphere. However, during Northern Hemisphere winter, the climate variations stemming from orbital forcing cannot be solely understood as a local thermodynamic response to radiation anomalies. Instead, orbital forcing perturbs the atmospheric circulation in a pattern bearing a striking resemblance to the northern annular mode, the primary mode of simulated and observed unforced atmospheric variability. The hypothesized reason for this similarity is that the circulation response to orbital forcing reflects the same dynamics generating unforced variability. These circulation anomalies are in turn responsible for significant fluctuations in other climate variables: Most of the simulated orbital signatures in wintertime surface air temperature over midlatitude continents are directly traceable not to local radiative forcing, but to orbital excitation of the northern annular mode. This has paleoclimate implications: during the point of the model integration corresponding to the last interglacial (Eemian) period, the orbital excitation of this mode generates a 1°–2°C warm surface air temperature anomaly over Europe, providing an explanation for the warm anomaly of comparable magnitude implied by the paleoclimate proxy record. The results imply that interpretations of the paleoclimate record must account for changes in surface temperature driven not only by changes in insolation, but also by perturbations in atmospheric dynamics.

Full access
J. David Neelin
,
Baird Langenbrunner
,
Joyce E. Meyerson
,
Alex Hall
, and
Neil Berg

Abstract

Projections of possible precipitation change in California under global warming have been subject to considerable uncertainty because California lies between the region anticipated to undergo increases in precipitation at mid-to-high latitudes and regions of anticipated decrease in the subtropics. Evaluation of the large-scale model experiments for phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests a greater degree of agreement on the sign of the winter (December–February) precipitation change than in the previous such intercomparison, indicating a greater portion of California falling within the increased precipitation zone. While the resolution of global models should not be relied on for accurate depiction of topographic rainfall distribution within California, the precipitation changes depend substantially on large-scale shifts in the storm tracks arriving at the coast. Significant precipitation increases in the region arriving at the California coast are associated with an eastward extension of the region of strong Pacific jet stream, which appears to be a robust feature of the large-scale simulated changes. This suggests that effects of this jet extension in steering storm tracks toward the California coast constitute an important factor that should be assessed for impacts on incoming storm properties for high-resolution regional model assessments.

Full access
Sandrine Bony
,
Robert Colman
,
Vladimir M. Kattsov
,
Richard P. Allan
,
Christopher S. Bretherton
,
Jean-Louis Dufresne
,
Alex Hall
,
Stephane Hallegatte
,
Marika M. Holland
,
William Ingram
,
David A. Randall
,
Brian J. Soden
,
George Tselioudis
, and
Mark J. Webb

Abstract

Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general circulation models. By reviewing recent observational, numerical, and theoretical studies, this paper shows that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of these feedbacks, and (iii) the development of methodologies of evaluation of these feedbacks (or of some components) using observations. This suggests that continuing developments in climate feedback research will progressively help make it possible to constrain the GCMs’ range of climate feedbacks and climate sensitivity through an ensemble of diagnostics based on physical understanding and observations.

Full access
Gavin A. Schmidt
,
Reto Ruedy
,
James E. Hansen
,
Igor Aleinov
,
Nadine Bell
,
Mike Bauer
,
Susanne Bauer
,
Brian Cairns
,
Vittorio Canuto
,
Ye Cheng
,
Anthony Del Genio
,
Greg Faluvegi
,
Andrew D. Friend
,
Tim M. Hall
,
Yongyun Hu
,
Max Kelley
,
Nancy Y. Kiang
,
Dorothy Koch
,
Andy A. Lacis
,
Jean Lerner
,
Ken K. Lo
,
Ron L. Miller
,
Larissa Nazarenko
,
Valdar Oinas
,
Jan Perlwitz
,
Judith Perlwitz
,
David Rind
,
Anastasia Romanou
,
Gary L. Russell
,
Makiko Sato
,
Drew T. Shindell
,
Peter H. Stone
,
Shan Sun
,
Nick Tausnev
,
Duane Thresher
, and
Mao-Sung Yao

Abstract

A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere temperatures and winds, cloud heights, precipitation, and sea level pressure. Data–model comparisons continue, however, to highlight persistent problems in the marine stratocumulus regions.

Full access