Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: David John Gagne II x
  • Artificial Intelligence for the Earth Systems x
  • Refine by Access: All Content x
Clear All Modify Search
Yingkai Sha
,
Ryan A. Sobash
, and
David John Gagne II

Abstract

An ensemble postprocessing method is developed for the probabilistic prediction of severe weather (tornadoes, hail, and wind gusts) over the conterminous United States (CONUS). The method combines conditional generative adversarial networks (CGANs), a type of deep generative model, with a convolutional neural network (CNN) to postprocess convection-allowing model (CAM) forecasts. The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts, and their outputs are processed by the CNN to estimate the probability of severe weather. The method is tested using High-Resolution Rapid Refresh (HRRR) 1–24-h forecasts as inputs and Storm Prediction Center (SPC) severe weather reports as targets. The method produced skillful predictions with up to 20% Brier skill score (BSS) increases compared to other neural-network-based reference methods using a testing dataset of HRRR forecasts in 2021. For the evaluation of uncertainty quantification, the method is overconfident but produces meaningful ensemble spreads that can distinguish good and bad forecasts. The quality of CGAN outputs is also evaluated. Results show that the CGAN outputs behave similarly to a numerical ensemble; they preserved the intervariable correlations and the contribution of influential predictors as in the original HRRR forecasts. This work provides a novel approach to postprocess CAM output using neural networks that can be applied to severe weather prediction.

Significance Statement

We use a new machine learning (ML) technique to generate probabilistic forecasts of convective weather hazards, such as tornadoes and hailstorms, with the output from high-resolution numerical weather model forecasts. The new ML system generates an ensemble of synthetic forecast fields from a single forecast, which are then used to train ML models for convective hazard prediction. Using this ML-generated ensemble for training leads to improvements of 10%–20% in severe weather forecast skills compared to using other ML algorithms that use only output from the single forecast. This work is unique in that it explores the use of ML methods for producing synthetic forecasts of convective storm events and using these to train ML systems for high-impact convective weather prediction.

Open access
Da Fan
,
Steven J. Greybush
,
Eugene E. Clothiaux
, and
David John Gagne II

Abstract

Convective initiation (CI) nowcasting remains a challenging problem for both numerical weather prediction models and existing nowcasting algorithms. In this study, an object-based probabilistic deep learning model is developed to predict CI based on multichannel infrared GOES-16 satellite observations. The data come from patches surrounding potential CI events identified in Multi-Radar Multi-Sensor Doppler weather radar products over the Great Plains region from June and July 2020 and June 2021. An objective radar-based approach is used to identify these events. The deep learning model significantly outperforms the classical logistic model at lead times up to 1 h, especially on the false alarm ratio. Through case studies, the deep learning model exhibits dependence on the characteristics of clouds and moisture at multiple altitudes. Model explanation further reveals that the contribution of features to model predictions is significantly dependent on the baseline, a reference point against which the prediction is compared. Under a moist baseline, moisture gradients in the lower and middle troposphere contribute most to correct CI forecasts. In contrast, under a clear-sky baseline, correct CI forecasts are dominated by cloud-top features, including cloud-top glaciation, height, and cloud coverage. Our study demonstrates the advantage of using different baselines in further understanding model behavior and gaining scientific insights.

Open access
Peter D. Dueben
,
Martin G. Schultz
,
Matthew Chantry
,
David John Gagne II
,
David Matthew Hall
, and
Amy McGovern

Abstract

Benchmark datasets and benchmark problems have been a key aspect for the success of modern machine learning applications in many scientific domains. Consequently, an active discussion about benchmarks for applications of machine learning has also started in the atmospheric sciences. Such benchmarks allow for the comparison of machine learning tools and approaches in a quantitative way and enable a separation of concerns for domain and machine learning scientists. However, a clear definition of benchmark datasets for weather and climate applications is missing with the result that many domain scientists are confused. In this paper, we equip the domain of atmospheric sciences with a recipe for how to build proper benchmark datasets, a (nonexclusive) list of domain-specific challenges for machine learning is presented, and it is elaborated where and what benchmark datasets will be needed to tackle these challenges. We hope that the creation of benchmark datasets will help the machine learning efforts in atmospheric sciences to be more coherent, and, at the same time, target the efforts of machine learning scientists and experts of high-performance computing to the most imminent challenges in atmospheric sciences. We focus on benchmarks for atmospheric sciences (weather, climate, and air-quality applications). However, many aspects of this paper will also hold for other aspects of the Earth system sciences or are at least transferable.

Significance Statement

Machine learning is the study of computer algorithms that learn automatically from data. Atmospheric sciences have started to explore sophisticated machine learning techniques and the community is making rapid progress on the uptake of new methods for a large number of application areas. This paper provides a clear definition of so-called benchmark datasets for weather and climate applications that help to share data and machine learning solutions between research groups to reduce time spent in data processing, to generate synergies between groups, and to make tool developments more targeted and comparable. Furthermore, a list of benchmark datasets that will be needed to tackle important challenges for the use of machine learning in atmospheric sciences is provided.

Free access