Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: David L. Randel x
- Global Precipitation Measurement (GPM): Science and Applications x
- Refine by Access: All Content x
Abstract
Prominent achievements made in addressing global precipitation using satellite passive microwave retrievals are often overshadowed by their performance at finer spatial and temporal scales, where large variability in cloud morphology poses an obstacle for accurate precipitation measurements. This is especially true over land, with precipitation estimates being based on an observed mean relationship between high-frequency (e.g., 89 GHz) brightness temperature depression (i.e., the ice-scattering signature) and surface precipitation rate. This indirect relationship between the observed (brightness temperatures) and state (precipitation) vectors often leads to inaccurate estimates, with more pronounced biases (e.g., −30% over the United States) observed during extreme events. This study seeks to mitigate these errors by employing previously established relationships between cloud structures and large-scale environments such as CAPE, wind shear, humidity distribution, and aerosol concentrations to form a stronger relationship between precipitation and the scattering signal. The GPM passive microwave operational precipitation retrieval (GPROF) for the GMI sensor is modified to offer additional information on atmospheric conditions to its Bayesian-based algorithm. The modified algorithm is allowed to use the large-scale environment to filter out a priori states that do not match the general synoptic condition relevant to the observation and thus reduces the difference between the assumed and observed variability in the ice-to-rain ratio. Using the ground Multi-Radar Multi-Sensor (MRMS) network over the United States, the results demonstrate outstanding potential in improving the accuracy of heavy precipitation over land. It is found that individual synoptic parameters can remove 20%–30% of existing bias and up to 50% when combined, while preserving the overall performance of the algorithm.
Abstract
Prominent achievements made in addressing global precipitation using satellite passive microwave retrievals are often overshadowed by their performance at finer spatial and temporal scales, where large variability in cloud morphology poses an obstacle for accurate precipitation measurements. This is especially true over land, with precipitation estimates being based on an observed mean relationship between high-frequency (e.g., 89 GHz) brightness temperature depression (i.e., the ice-scattering signature) and surface precipitation rate. This indirect relationship between the observed (brightness temperatures) and state (precipitation) vectors often leads to inaccurate estimates, with more pronounced biases (e.g., −30% over the United States) observed during extreme events. This study seeks to mitigate these errors by employing previously established relationships between cloud structures and large-scale environments such as CAPE, wind shear, humidity distribution, and aerosol concentrations to form a stronger relationship between precipitation and the scattering signal. The GPM passive microwave operational precipitation retrieval (GPROF) for the GMI sensor is modified to offer additional information on atmospheric conditions to its Bayesian-based algorithm. The modified algorithm is allowed to use the large-scale environment to filter out a priori states that do not match the general synoptic condition relevant to the observation and thus reduces the difference between the assumed and observed variability in the ice-to-rain ratio. Using the ground Multi-Radar Multi-Sensor (MRMS) network over the United States, the results demonstrate outstanding potential in improving the accuracy of heavy precipitation over land. It is found that individual synoptic parameters can remove 20%–30% of existing bias and up to 50% when combined, while preserving the overall performance of the algorithm.
Abstract
Several decades of continuous improvements in satellite precipitation algorithms have resulted in fairly accurate level-2 precipitation products for local-scale applications. Numerous studies have been carried out to quantify random and systematic errors at individual validation sites and regional networks. Understanding uncertainties at larger scales, however, has remained a challenge. Temporal changes in precipitation regional biases, regime morphology, sampling, and observation-vector information content, all play important roles in defining the accuracy of satellite rainfall retrievals. This study considers these contributors to offer a quantitative estimate of uncertainty in recently produced global precipitation climate data record. Generated from intercalibrated observations collected by a constellation of passive microwave (PMW) radiometers over the course of 30 years, this data record relies on Global Precipitation Measurement (GPM) mission enterprise PMW precipitation retrieval to offer a long-term global monthly precipitation estimates with corresponding uncertainty at 5° scales. To address changes in the information content across different constellation members the study develops synthetic datasets from GPM Microwave Imager (GMI) sensor, while sampling- and morphology-related uncertainties are quantified using GPM’s dual-frequency precipitation radar (DPR). Special attention is given to separating precipitation into self-similar states that appear to be consistent across environmental conditions. Results show that the variability of bias patterns can be explained by the relative occurrence of different precipitation states across the regions and used to calculate product’s uncertainty. It is found that at 5° spatial scale monthly mean precipitation uncertainties in tropics can exceed 10%.
Abstract
Several decades of continuous improvements in satellite precipitation algorithms have resulted in fairly accurate level-2 precipitation products for local-scale applications. Numerous studies have been carried out to quantify random and systematic errors at individual validation sites and regional networks. Understanding uncertainties at larger scales, however, has remained a challenge. Temporal changes in precipitation regional biases, regime morphology, sampling, and observation-vector information content, all play important roles in defining the accuracy of satellite rainfall retrievals. This study considers these contributors to offer a quantitative estimate of uncertainty in recently produced global precipitation climate data record. Generated from intercalibrated observations collected by a constellation of passive microwave (PMW) radiometers over the course of 30 years, this data record relies on Global Precipitation Measurement (GPM) mission enterprise PMW precipitation retrieval to offer a long-term global monthly precipitation estimates with corresponding uncertainty at 5° scales. To address changes in the information content across different constellation members the study develops synthetic datasets from GPM Microwave Imager (GMI) sensor, while sampling- and morphology-related uncertainties are quantified using GPM’s dual-frequency precipitation radar (DPR). Special attention is given to separating precipitation into self-similar states that appear to be consistent across environmental conditions. Results show that the variability of bias patterns can be explained by the relative occurrence of different precipitation states across the regions and used to calculate product’s uncertainty. It is found that at 5° spatial scale monthly mean precipitation uncertainties in tropics can exceed 10%.