Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: David M. Mills x
  • Weather, Climate, and Society x
  • Refine by Access: All Content x
Clear All Modify Search
Scott Greene
,
Laurence S. Kalkstein
,
David M. Mills
, and
Jason Samenow

Abstract

This study examines the impact of a changing climate on heat-related mortality in 40 large cities in the United States. A synoptic climatological procedure, the spatial synoptic classification, is used to evaluate present climate–mortality relationships and project how potential climate changes might affect these values. Specifically, the synoptic classification is combined with downscaled future climate projections for the decadal periods of 2020–29, 2045–55, and 2090–99 from a coupled atmospheric–oceanic general circulation model. The results show an increase in excessive heat event (EHE) days and increased heat-attributable mortality across the study cities with the most pronounced increases projected to occur in the Southeast and Northeast. This increase becomes more dramatic toward the end of the twenty-first century as the anticipated impact of climate change intensifies. The health impact associated with different emissions scenarios is also examined. These results suggest that a “business as usual” approach to greenhouse gas emissions mitigation could result in twice as many heat-related deaths by the end of the century than a lower emissions scenario. Finally, a comparison of future estimates of heat-related mortality during EHEs is presented using algorithms developed during two different, although overlapping, time periods, one that includes some recent large-scale significant EHE intervention strategies (1975–2004), and one without (1975–95). The results suggest these public health responses can significantly decrease heat-related mortality.

Full access