Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: David Parrish x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Steven E. Koch, Brian D. Jamison, Chungu Lu, Tracy L. Smith, Edward I. Tollerud, Cecilia Girz, Ning Wang, Todd P. Lane, Melvyn A. Shapiro, David D. Parrish, and Owen R. Cooper

Abstract

High-resolution dropwindsonde and in-flight measurements collected by a research aircraft during the Severe Clear-Air Turbulence Colliding with Aircraft Traffic (SCATCAT) experiment and simulations from numerical models are analyzed for a clear-air turbulence event associated with an intense upper-level jet/frontal system. Spectral, wavelet, and structure function analyses performed with the 25-Hz in situ data are used to investigate the relationship between gravity waves and turbulence. Mesoscale dynamics are analyzed with the 20-km hydrostatic Rapid Update Cycle (RUC) model and a nested 1-km simulation with the nonhydrostatic Clark–Hall (CH) cloud-scale model.

Turbulence occurred in association with a wide spectrum of upward propagating gravity waves above the jet core. Inertia–gravity waves were generated within a region of unbalanced frontogenesis in the vicinity of a complex tropopause fold. Turbulent kinetic energy fields forecast by the RUC and CH models displayed a strongly banded appearance associated with these mesoscale gravity waves (horizontal wavelengths of ∼120–216 km). Smaller-scale gravity wave packets (horizontal wavelengths of 1–20 km) within the mesoscale wave field perturbed the background wind shear and stability, promoting the development of bands of reduced Richardson number conducive to the generation of turbulence. The wavelet analysis revealed that brief episodes of high turbulent energy were closely associated with gravity wave occurrences. Structure function analysis provided evidence that turbulence was most strongly forced at a horizontal scale of 700 m.

Fluctuations in ozone measured by the aircraft correlated highly with potential temperature fluctuations and the occurrence of turbulent patches at altitudes just above the jet core, but not at higher flight levels, even though the ozone fluctuations were much larger aloft. These results suggest the existence of remnant “fossil turbulence” from earlier events at higher levels, and that ozone cannot be used as a substitute for more direct measures of turbulence. The findings here do suggest that automated turbulence forecasting algorithms should include some reliable measure of gravity wave activity.

Full access