Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: David Parrish x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Wan-Shu Wu, David F. Parrish, Eric Rogers, and Ying Lin

Abstract

At the National Centers for Environmental Prediction, the global ensemble forecasts from the ensemble Kalman filter scheme in the Global Forecast System are applied in a regional three-dimensional (3D) and a four dimensional (4D) ensemble–variational (EnVar) data assimilation system. The application is a one-way variational method using hybrid static and ensemble error covariances. To enhance impact, three new features have been added to the existing EnVar system in the Gridpoint Statistical Interpolation (GSI). First, the constant coefficients that assign relative weight between the ensemble and static background error are now allowed to vary in the vertical. Second, a new formulation is introduced for the ensemble contribution to the analysis surface pressure. Finally, in order to make use of the information in the ensemble mean that is disregarded in the existing EnVar in GSI, the trajectory correction, a novel approach, is introduced. Relative to the application of a 3D variational data assimilation algorithm, a clear positive impact on 1–3-day forecasts is realized when applying 3DEnVar analyses in the North American Mesoscale Forecast System (NAM). The 3DEnVar DA system was operationally implemented in the NAM Data Assimilation System in August 2014. Application of a 4DEnVar algorithm is shown to further improve forecast accuracy relative to the 3DEnVar. The approach described in this paper effectively combines contributions from both the regional and the global forecast systems to produce the initial conditions for the regional NAM system.

Full access
John C. Derber, David F. Parrish, and Stephen J. Lord

Abstract

At the National Meteorological Center (NMC), a new analysis system was implemented into the operational Global Data Assimilation System on 25 June 1991. This analysis system is referred to as Spectral Statistical Interpolation (SSI) because the spectral coefficients used in the NMC spectral model are analyzed directly using the same basic equations as statistical (optimum) interpolation. The major differences between the SSI analysis system and the conventional optimum interpolation (OI) analysis system previously used operationally at NMC are:

  • –The analysis variables are closely related to the coefficients of the NMC spectral model.
  • –Temperature observations are used, not heights as in the previous procedure. As a result, aircraft temperatures are being used for the first time at NMC.
  • –Nonstandard observations, such as satellite estimates of total precipitable water and ocean-surface wind speeds, can be easily included.
  • –No data selection is necessary. All observations are used simultaneously.
  • –The dynamical constraint between the wind and mass fields is more realistic and applied globally.
  • –Model initialization has been eliminated. The analysis is used directly as the forecast model initial condition.

Extensive pre-implementation testing demonstrated that the SSI consistently produced superior analyses and forecasts when compared to the previous OI system. Improvement in skill is shown not only for the 3–5-day forecasts, but also in one-day aviation forecasts.

Full access
Dusanka Zupanski, Milija Zupanski, Eric Rogers, David F. Parrish, and Geoffrey J. DiMego

Abstract

The National Centers for Environmental Prediction fine-resolution four-dimensional variational (4DVAR) data assimilation system is used to study the Great Plains tornado outbreak of 3 May 1999. It was found that the 4DVAR method was able to capture very well the important precursors for the tornadic activity, such as upper- and low-level jet streaks, wind shear, humidity field, surface CAPE, and so on. It was also demonstrated that, in this particular synoptic case, characterized by fast-changing mesoscale systems, the model error adjustment played a substantial role. The experimental results suggest that the common practice of neglecting the model error in data assimilation systems may not be justified in synoptic situations similar to this one.

Full access
Peter Caplan, John Derber, William Gemmill, Song-You Hong, Hua-Lu Pan, and David Parrish

Abstract

Recent changes in the operational National Centers for Environmental Prediction (formerly the National Meteorological Center) global analysis–forecast system are described. The most significant analysis change was the direct use of satellite-measured radiances as input to the analysis system. Other analysis system changes involved the inclusion of near-surface winds from the ERS-1 satellite system and the addition of a constraint on the divergence increment. In the forecast model, the parameterization of deep convection and the boundary layer scheme were modified. During two months of tests (June and July 1995), the new system produced substantially better forecasts of geopotential height and wind throughout the troposphere, especially in the Southern Hemisphere. Precipitation forecasts over the United States were slightly more skillful in the new system. Subjective evaluations over the Tropics revealed that the new model is more active at small scales, producing more clearly defined convective rain cores and vorticity patterns.

Full access
Zhao-Xia Pu, Eugenia Kalnay, David Parrish, Wanshu Wu, and Zoltan Toth

Abstract

The errors in the first-guess (forecast field) of an analysis system vary from day to day, but, as in all current operational data assimilation systems, forecast error covariances are assumed to be constant in time in the NCEP operational three-dimensional variational analysis system (known as a spectral statistical interpolation or SSI). This study focuses on the impact of modifying the error statistics by including effects of the “errors of the day” on the analysis system. An estimate of forecast uncertainty, as defined from the bred growing vectors of the NCEP operational global ensemble forecast, is applied in the NCEP operational SSI analysis system. The growing vectors are used to estimate the spatially and temporally varying degree of uncertainty in the first-guess forecasts used in the analysis. The measure of uncertainty is defined by a ratio of the local amplitude of the growing vectors, relative to a background amplitude measure over a large area. This ratio is used in the SSI system for adjusting the observational error term (giving more weight to observations in regions of larger forecast errors). Preliminary experiments with the low-resolution global system show positive impact of this virtually cost-free method on the quality of the analysis and medium-range weather forecasts, encouraging further tests for operational use. The results of a 45-day parallel run, and a discussion of other methods to take advantage of the knowledge of the day-to-day variation in forecast uncertainties provided by the NCEP ensemble forecast system, are also presented in the paper.

Full access
Daryl T. Kleist, David F. Parrish, John C. Derber, Russ Treadon, Wan-Shu Wu, and Stephen Lord

Abstract

At the National Centers for Environmental Prediction (NCEP), a new three-dimensional variational data assimilation (3DVAR) analysis system was implemented into the operational Global Data Assimilation System (GDAS) on 1 May 2007. The new analysis system, the Gridpoint Statistical Interpolation (GSI), replaced the Spectral Statistical Interpolation (SSI) 3DVAR system, which had been operational since 1991. The GSI was developed at the Environmental Modeling Center at NCEP as part of an effort to create a more unified, robust, and efficient analysis scheme. The key aspect of the GSI is that it formulates the analysis in model grid space, which allows for more flexibility in the application of the background error covariances and makes it straightforward for a single analysis system to be used across a broad range of applications, including both global and regional modeling systems and domains.

Due to the constraints of working with an operational system, the final GDAS package included many changes other than just a simple replacing of the SSI with the new GSI. The new GDAS package contained an upgrade to the Global Forecast System model, including a new vertical coordinate, as well as new features in the GSI that were never developed for the SSI. Some of these new features included changes to the observation selection, quality control, minimization algorithm, dynamic balance constraint, and assimilation of new observation types. The evaluation of the new system relative to the SSI-based system was performed for nearly an entire year of analyses and forecasts. The objective and subjective evaluations showed that the new package exhibited superior forecast performance relative to the old SSI-based system. The new system has been shown to improve forecast skill in the tropics and substantially reduce the short-term forecast error in the extratropics. This implementation has laid the groundwork for future scientific advancements in data assimilation at NCEP.

Full access
Tom H. Zapotocny, Steven J. Nieman, W. Paul Menzel, James P. Nelson III, James A. Jung, Eric Rogers, David F. Parrish, Geoffrey J. DiMego, Michael Baldwin, and Timothy J. Schmit

Abstract

A case study is utilized to determine the sensitivity of the Eta Data Assimilation System (EDAS) to all operational observational data types used within it. The work described in this paper should be of interest to Eta Model users trying to identify the impact of each data type and could benefit other modelers trying to use EDAS analyses and forecasts as initial conditions for other models.

The case study chosen is one characterized by strong Atlantic and Pacific maritime cyclogenesis, and is shortly after the EDAS began using three-dimensional variational analysis. The control run of the EDAS utilizes all 34 of the operational data types. One of these data types is then denied for each of the subsequent experimental runs. Differences between the experimental and control runs are analyzed to demonstrate the sensitivity of the EDAS system to each data type for the analysis and subsequent 48-h forecasts. Results show the necessity of various nonconventional observation types, such as aircraft data, satellite precipitable water, and cloud drift winds. These data types are demonstrated to have a significant impact, especially observations in maritime regions.

Full access
Manuel S. F. V. De Pondeca, Geoffrey S. Manikin, Geoff DiMego, Stanley G. Benjamin, David F. Parrish, R. James Purser, Wan-Shu Wu, John D. Horel, David T. Myrick, Ying Lin, Robert M. Aune, Dennis Keyser, Brad Colman, Greg Mann, and Jamie Vavra

Abstract

In 2006, the National Centers for Environmental Prediction (NCEP) implemented the Real-Time Mesoscale Analysis (RTMA) in collaboration with the Earth System Research Laboratory and the National Environmental, Satellite, and Data Information Service (NESDIS). In this work, a description of the RTMA applied to the 5-km resolution conterminous U.S. grid of the National Digital Forecast Database is given. Its two-dimensional variational data assimilation (2DVAR) component used to analyze near-surface observations is described in detail, and a brief discussion of the remapping of the NCEP stage II quantitative precipitation amount and NESDIS Geostationary Operational Environmental Satellite (GOES) sounder effective cloud amount to the 5-km grid is offered. Terrain-following background error covariances are used with the 2DVAR approach, which produces gridded fields of 2-m temperature, 2-m specific humidity, 2-m dewpoint, 10-m U and V wind components, and surface pressure. The estimate of the analysis uncertainty via the Lanczos method is briefly described. The strength of the 2DVAR is illustrated by (i) its ability to analyze a June 2007 cold temperature pool over the Washington, D.C., area; (ii) its fairly good analysis of a December 2008 mid-Atlantic region high-wind event that started from a very weak first guess; and (iii) its successful recovery of the finescale moisture features in a January 2010 case study over southern California. According to a cross-validation analysis for a 15-day period during November 2009, root-mean-square error improvements over the first guess range from 16% for wind speed to 45% for specific humidity.

Full access