Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: David Parsons x
  • Plains Elevated Convection At Night (PECAN) x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search

Bore-ing into Nocturnal Convection

Kevin R. Haghi
,
Bart Geerts
,
Hristo G. Chipilski
,
Aaron Johnson
,
Samuel Degelia
,
David Imy
,
David B. Parsons
,
Rebecca D. Adams-Selin
,
David D. Turner
, and
Xuguang Wang

Abstract

There has been a recent wave of attention given to atmospheric bores in order to understand how they evolve and initiate and maintain convection during the night. This surge is attributable to data collected during the 2015 Plains Elevated Convection at Night (PECAN) field campaign. A salient aspect of the PECAN project is its focus on using multiple observational platforms to better understand convective outflow boundaries that intrude into the stable boundary layer and induce the development of atmospheric bores. The intent of this article is threefold: 1) to educate the reader on current and future foci of bore research, 2) to present how PECAN observations will facilitate aforementioned research, and 3) to stimulate multidisciplinary collaborative efforts across other closely related fields in an effort to push the limitations of prediction of nocturnal convection.

Full access
Bart Geerts
,
David Parsons
,
Conrad L. Ziegler
,
Tammy M. Weckwerth
,
Michael I. Biggerstaff
,
Richard D. Clark
,
Michael C. Coniglio
,
Belay B. Demoz
,
Richard A. Ferrare
,
William A. Gallus Jr.
,
Kevin Haghi
,
John M. Hanesiak
,
Petra M. Klein
,
Kevin R. Knupp
,
Karen Kosiba
,
Greg M. McFarquhar
,
James A. Moore
,
Amin R. Nehrir
,
Matthew D. Parker
,
James O. Pinto
,
Robert M. Rauber
,
Russ S. Schumacher
,
David D. Turner
,
Qing Wang
,
Xuguang Wang
,
Zhien Wang
, and
Joshua Wurman

Abstract

The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.

To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.

Full access