Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: David Parsons x
  • Plains Elevated Convection At Night (PECAN) x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Dylan W. Reif
,
Howard B. Bluestein
, and
David B. Parsons

Abstract

This study creates a composite sounding for nocturnal convection initiation (CI) events under weakly forced conditions and utilizes an idealized numerical simulation to assess the impact of atmospheric bores on these environments. Thirteen soundings were used to create this composite sounding. Common conditions associated with these weakly forced environments include a nocturnal low-level jet and a Brunt–Väisälä frequency of 0.011 s−1 above 900 hPa. The median lift needed for parcels to realize any convective instability is 490 m, the median convective available potential energy of these convectively unstable parcels is 992 J kg−1, and the median initial pressure of these parcels is 800 hPa. An idealized numerical simulation was utilized to examine the potential influence of bores on CI in an environment based on composite sounding. The characteristics of the simulated bore were representative of observed bores. The vertical velocities associated with this simulated bore were between 1 and 2 m s−1, and the net upward displacement of parcels was between 400 and 650 m. The vertical displacement of air parcels has two notable phases: lift by the bore itself and smaller-scale lift that occurs 100–150 km ahead of the bore passage. The prebore lift is between 50 and 200 m and appears to be related to low-frequency waves ahead of the bores. The lift with these waves was maximized in the low to midtroposphere between 1 and 4 km AGL, and this lift may play a role in assisting CI in these otherwise weakly forced environments.

Restricted access
Aaron Johnson
,
Xuguang Wang
,
Kevin R. Haghi
, and
David B. Parsons

Abstract

This paper presents a case study from an intensive observing period (IOP) during the Plains Elevated Convection at Night (PECAN) field experiment that was focused on a bore generated by nocturnal convection. Observations from PECAN IOP 25 on 11 July 2015 are used to evaluate the performance of high-resolution Weather Research and Forecasting Model forecasts, initialized using the Gridpoint Statistical Interpolation (GSI)-based ensemble Kalman filter. The focus is on understanding model errors and sensitivities in order to guide forecast improvements for bores associated with nocturnal convection. Model simulations of the bore amplitude are compared against eight retrieved vertical cross sections through the bore during the IOP. Sensitivities of forecasts to microphysics and planetary boundary layer (PBL) parameterizations are also investigated. Forecasts initialized before the bore pulls away from the convection show a more realistic bore than forecasts initialized later from analyses of the bore itself, in part due to the smoothing of the existing bore in the ensemble mean. Experiments show that the different microphysics schemes impact the quality of the simulations with unrealistically weak cold pools and bores with the Thompson and Morrison microphysics schemes, cold pools too strong with the WDM6 and more accurate with the WSM6 schemes. Most PBL schemes produced a realistic bore response to the cold pool, with the exception of the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, which creates too much turbulent mixing atop the bore. A new method of objectively estimating the depth of the near-surface stable layer corresponding to a simple two-layer model is also introduced, and the impacts of turbulent mixing on this estimate are discussed.

Full access
Hristo G. Chipilski
,
Xuguang Wang
, and
David B. Parsons

Abstract

A novel object-based algorithm capable of identifying and tracking convective outflow boundaries in convection-allowing numerical models is presented in this study. The most distinct feature of the proposed algorithm is its ability to seamlessly analyze numerically simulated density currents and bores, both of which play an important role in the dynamics of nocturnal convective systems. The unified identification and classification of these morphologically different phenomena is achieved through a multivariate approach combined with appropriate image processing techniques. The tracking component of the algorithm utilizes two dynamical constraints, which improve the object association results in comparison to methods based on statistical assumptions alone. Special attention is placed on some of the outstanding challenges regarding the formulation of the algorithm and possible ways to address those in future research. Apart from describing the technical details behind the algorithm, this study also introduces specific algorithm applications relevant to the analysis and prediction of bores. These applications are illustrated for a retrospective case study simulated with a convection-allowing ensemble prediction system. The paper highlights how the newly developed algorithm tools naturally form a foundation for understanding the initiation, structure, and evolution of bores and convective systems in the nocturnal environment.

Full access
Manda B. Chasteen
,
Steven E. Koch
, and
David B. Parsons

Abstract

Nocturnal mesoscale convective systems (MCSs) frequently develop over the Great Plains in the presence of a nocturnal low-level jet (LLJ), which contributes to convective maintenance by providing a source of instability, convergence, and low-level vertical wind shear. Although these nocturnal MCSs often dissipate during the morning, many persist into the following afternoon despite the cessation of the LLJ with the onset of solar heating. The environmental factors enabling the postsunrise persistence of nocturnal convection are currently not well understood. A thorough investigation into the processes supporting the longevity and daytime persistence of an MCS was conducted using routine observations, RAP analyses, and a WRF-ARW simulation. Elevated nocturnal convection developed in response to enhanced frontogenesis, which quickly grew upscale into a severe quasi-linear convective system (QLCS). The western portion of this QLCS reorganized into a bow echo with a pronounced cold pool and ultimately an organized leading-line, trailing-stratiform MCS as it moved into an increasingly unstable environment. Differential advection resulting from the interaction of the nocturnal LLJ with the topography of west Texas established considerable heterogeneity in moisture, CAPE, and CIN, which influenced the structure and evolution of the MCS. An inland-advected moisture plume significantly increased near-surface CAPE during the nighttime over central Texas, while the environment over southeastern Texas abruptly destabilized following the commencement of surface heating and downward moisture transport. The unique topography of the southern plains and the close proximity to the Gulf of Mexico provided an environment conducive to the postsunrise persistence of the organized MCS.

Full access
Hristo G. Chipilski
,
Xuguang Wang
,
David B. Parsons
,
Aaron Johnson
, and
Samuel K. Degelia

Abstract

There is a growing interest in the use of ground-based remote sensors for numerical weather prediction, which is sparked by their potential to address the currently existing observation gap within the planetary boundary layer. Nevertheless, open questions still exist regarding the relative importance of and synergy among various instruments. To shed light on these important questions, the present study examines the forecast benefits associated with several different ground-based profiling networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated verification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill, in terms of both the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexities in the governing moisture dynamics are two factors that can further limit the forecast value extracted from such networks.

Full access