Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Debasis Sengupta x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Debasis Sengupta
,
Retish Senan
,
B. N. Goswami
, and
Jérôme Vialard

Abstract

New satellite and in situ observations show large intraseasonal (10–60 day) variability of surface winds and upper-ocean current in the equatorial Indian Ocean, particularly in the east. An ocean model forced by the Quick Scatterometer (QuikSCAT) wind stress is used to study the dynamics of the intraseasonal zonal current. The model has realistic upper-ocean currents and thermocline depth variabilities on intraseasonal to interannual scales. The quality of the simulation is directly attributed to the accuracy of the wind forcing. At the equator, moderate westerly winds are punctuated by strong 10–40-day westerly wind bursts. The wind bursts force swift, intraseasonal (20–50 day) eastward equatorial jets in spring, summer, and fall. The zonal momentum balance is between local acceleration, stress, and pressure, while nonlinearity deepens and strengthens the eastward current. The westward pressure force associated with the thermocline deepening toward the east rapidly arrests eastward jets and, subsequently, generates (weak) westward flow. Thus, in accord with direct observations in the east, the spring jet is a single intraseasonal event, there are intraseasonal jets in summer, and the fall jet is long lived but strongly modulated on an intraseasonal scale. The zonal pressure force is almost always westward in the upper 120 m, and changes sign twice a year in the 120–200-m layer. Transient eastward equatorial undercurrents in early spring and late summer are associated with semiannual Rossby waves generated at the eastern boundary following thermocline deepening by the spring and fall jets. An easterly wind stress is not necessary to generate the undercurrents. Experiments with a single westerly wind burst forcing show that apart from the intraseasonal response, the zonal pressure force and current in the east have an intrinsic 90-day time scale that arises purely from equatorial adjustment.

Full access
R. A. Weller
,
J. T. Farrar
,
Hyodae Seo
,
Channing Prend
,
Debasis Sengupta
,
J. Sree Lekha
,
M. Ravichandran
, and
R. Venkatesen

Abstract

Time series of surface meteorology and air–sea fluxes from the northern Bay of Bengal are analyzed, quantifying annual and seasonal means, variability, and the potential for surface fluxes to contribute significantly to variability in surface temperature and salinity. Strong signals were associated with solar insolation and its modulation by cloud cover, and, in the 5- to 50-day range, with intraseasonal oscillations (ISOs). The northeast (NE) monsoon (DJF) was typically cloud free, with strong latent heat loss and several moderate wind events, and had the only seasonal mean ocean heat loss. The spring intermonsoon (MAM) was cloud free and had light winds and the strongest ocean heating. Strong ISOs and Tropical Cyclone Komen were seen in the southwest (SW) monsoon (JJA), when 65% of the 2.2-m total rain fell, and oceanic mean heating was small. The fall intermonsoon (SON) initially had moderate convective systems and mean ocean heating, with a transition to drier winds and mean ocean heat loss in the last month. Observed surface freshwater flux applied to a layer of the observed thickness produced drops in salinity with timing and magnitude similar to the initial drops in salinity in the summer monsoon, but did not reproduce the salinity variability of the fall intermonsoon. Observed surface heat flux has the potential to cause the temperature trends of the different seasons, but uncertainty in how shortwave radiation is absorbed in the upper ocean limits quantifying the role of surface forcing in the evolution of mixed layer temperature.

Open access