Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Deirdre M. Kann x
  • Refine by Access: All Content x
Clear All Modify Search
David S. Gutzler, Sharon M. Sullivan, and Deirdre M. Kann

Abstract

The wettest year, by a huge margin, in the instrumental history for the state of New Mexico was 1941. The authors describe the extraordinary magnitude and persistence of above-average precipitation across the seasonal cycle during this year and consider possible climatic causes of this exceptional annual anomaly through examination of a wide variety of historical records and modern analysis tools. Indices of the Pacific decadal oscillation and the El Niño–Southern Oscillation were both extremely positive in 1941, consistent with the historical tendency for above-average precipitation across the southern United States under such conditions. However, the largest precipitation anomalies occurred in transition season months that do not fit the typical seasonality associated with strong ENSO- or PDO-related continental climate anomalies in the more recent historical record. The difficulty in attributing this extreme annual anomaly to any specific climatic cause is a reminder that the radiosonde era provides only a limited sample of natural climatic variability. The number and quality of data sources available for preradiosonde years allows for surprisingly in-depth observational analysis of early twentieth-century climatic anomalies.

Full access
David S. Gutzler, Deirdre M. Kann, and Casey Thornbrugh

Abstract

Seasonal predictability of winter precipitation anomalies across the U.S. Southwest derived from knowledge of antecedent, late-summer Pacific Ocean surface temperatures is examined empirically. Previous studies have shown that equatorial Pacific SST anomalies associated with the El Niño–Southern Oscillation (ENSO) cycle, which are persistent from late summer through winter, exhibit a strong relationship with winter precipitation in Arizona and New Mexico. Here the degree to which seasonal predictability in this region is modulated by longer-term oceanic fluctuations associated with the Pacific decadal oscillation (PDO) is assessed. When all years from 1950 through 1997 are considered as a single dataset, inclusion of the PDO signal adds only slightly to the ENSO-based statistical predictability of Southwest winter precipitation anomalies. However, when the dataset is split into two subperiods delineated by a major shift in the PDO (before and after 1977), the ENSO-based predictability and, to a lesser extent, PDO-based predictability are substantially modified. Before 1977, negative winter precipitation anomalies are strongly tied to ENSO cold years but warm years do not systematically lead to positive precipitation anomalies. After 1977, this asymmetry is reversed and positive precipitation anomalies predictably follow warm ENSO years but cold years yield no precipitation predictability. Within each subperiod, interannual PDO fluctuations yield less predictability than ENSO fluctuations. Thus ENSO-based predictability seems to undergo a profound decadal modification that might be associated statistically with the PDO, but the physical link to North Pacific Ocean temperatures is problematic.

Full access