Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Dhruv Balwada x
  • The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) x
  • Refine by Access: All Content x
Clear All Modify Search
Dhruv Balwada
,
Joseph H. LaCasce
,
Kevin G. Speer
, and
Raffaele Ferrari

Abstract

Stirring in the subsurface Southern Ocean is examined using RAFOS float trajectories, collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), along with particle trajectories from a regional eddy permitting model. A central question is the extent to which the stirring is local, by eddies comparable in size to the pair separation, or nonlocal, by eddies at larger scales. To test this, we examine metrics based on averaging in time and in space. The model particles exhibit nonlocal dispersion, as expected for a limited resolution numerical model that does not resolve flows at scales smaller than ~10 days or ~20–30 km. The different metrics are less consistent for the RAFOS floats; relative dispersion, kurtosis, and relative diffusivity suggest nonlocal dispersion as they are consistent with the model within error, while finite-size Lyapunov exponents (FSLE) suggests local dispersion. This occurs for two reasons: (i) limited sampling of the inertial length scales and a relatively small number of pairs hinder statistical robustness in time-based metrics, and (ii) some space-based metrics (FSLE, second-order structure functions), which do not average over wave motions and are reflective of the kinetic energy distribution, are probably unsuitable to infer dispersion characteristics if the flow field includes energetic wave motions that do not disperse particles. The relative diffusivity, which is also a space-based metric, allows averaging over waves to infer the dispersion characteristics. Hence, given the error characteristics of the metrics and data used here, the stirring in the DIMES region is likely to be nonlocal at scales of 5–100 km.

Open access
Dhruv Balwada
,
Kevin G. Speer
,
Joseph H. LaCasce
,
W. Brechner Owens
,
John Marshall
, and
Raffaele Ferrari

Abstract

The large-scale middepth circulation and eddy diffusivities in the southeast Pacific Ocean and Scotia Sea sectors between 110° and 45°W of the Antarctic Circumpolar Current (ACC) are described based on a subsurface quasi-isobaric RAFOS-float-based Lagrangian dataset. These RAFOS float data were collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The mean flow, adjusted to a common 1400-m depth, shows the presence of jets in the time-averaged sense with speeds of 6 cm s−1 in the southeast Pacific Ocean and upward of 13 cm s−1 in the Scotia Sea. These jets appear to be locked to topography in the Scotia Sea but, aside from negotiating a seamount chain, are mostly free of local topographic constraints in the southeast Pacific Ocean. The eddy kinetic energy (EKE) is higher than the mean kinetic energy everywhere in the sampled domain by about 50%. The magnitude of the EKE increases drastically (by a factor of 2 or more) as the current crosses over the Hero and Shackleton fracture zones into the Scotia Sea. The meridional isopycnal stirring shows lateral and vertical variations with local eddy diffusivities as high as 2800 ± 600 m2 s−1 at 700 m decreasing to 990 ± 200 m2 s−1 at 1800 m in the southeast Pacific Ocean. However, the cross-ACC diffusivity in the southeast Pacific Ocean is significantly lower, with values of 690 ± 150 and 1000 ± 200 m2 s−1 at shallow and deep levels, respectively, due to the action of jets. The cross-ACC diffusivity in the Scotia Sea is about 1200 ± 500 m2 s−1.

Full access