Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Dmitri Moisseev x
- Global Precipitation Measurement (GPM): Science and Applications x
- Refine by Access: All Content x
Abstract
Two power-law relations linking equivalent radar reflectivity factor Z e and snowfall rate S are derived for a K-band Micro Rain Radar (MRR) and for a W-band cloud radar. For the development of these Z e –S relationships, a dataset of calculated and measured variables is used. Surface-based video-disdrometer measurements were collected during snowfall events over five winters at the high-latitude site in Hyytiälä, Finland. The data from 2014 to 2018 include particle size distributions (PSD) and their fall velocities, from which snowflake masses were derived. The K- and W-band Z e values are computed using these surface-based observations and snowflake scattering properties as provided by T-matrix and single-particle scattering tables, respectively. The uncertainty analysis shows that the K-band snowfall-rate estimation is significantly improved by including the intercept parameter N 0 of the PSD calculated from concurrent disdrometer measurements. If N 0 is used to adjust the prefactor of the Z e –S relationship, the RMSE of the snowfall-rate estimate can be reduced from 0.37 to around 0.11 mm h−1. For W-band radar, a Z e –S relationship with constant parameters for all available snow events shows a similar uncertainty when compared with the method that includes the PSD intercept parameter. To demonstrate the performance of the proposed Z e –S relationships, they are applied to measurements of the MRR and the W-band microwave radar for Arctic clouds at the Arctic research base operated by the German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) and the French Polar Institute Paul Emile Victor (IPEV) (AWIPEV) in Ny-Ålesund, Svalbard, Norway. The resulting snowfall-rate estimates show good agreement with in situ snowfall observations while other Z e –S relationships from literature reveal larger differences.
Abstract
Two power-law relations linking equivalent radar reflectivity factor Z e and snowfall rate S are derived for a K-band Micro Rain Radar (MRR) and for a W-band cloud radar. For the development of these Z e –S relationships, a dataset of calculated and measured variables is used. Surface-based video-disdrometer measurements were collected during snowfall events over five winters at the high-latitude site in Hyytiälä, Finland. The data from 2014 to 2018 include particle size distributions (PSD) and their fall velocities, from which snowflake masses were derived. The K- and W-band Z e values are computed using these surface-based observations and snowflake scattering properties as provided by T-matrix and single-particle scattering tables, respectively. The uncertainty analysis shows that the K-band snowfall-rate estimation is significantly improved by including the intercept parameter N 0 of the PSD calculated from concurrent disdrometer measurements. If N 0 is used to adjust the prefactor of the Z e –S relationship, the RMSE of the snowfall-rate estimate can be reduced from 0.37 to around 0.11 mm h−1. For W-band radar, a Z e –S relationship with constant parameters for all available snow events shows a similar uncertainty when compared with the method that includes the PSD intercept parameter. To demonstrate the performance of the proposed Z e –S relationships, they are applied to measurements of the MRR and the W-band microwave radar for Arctic clouds at the Arctic research base operated by the German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) and the French Polar Institute Paul Emile Victor (IPEV) (AWIPEV) in Ny-Ålesund, Svalbard, Norway. The resulting snowfall-rate estimates show good agreement with in situ snowfall observations while other Z e –S relationships from literature reveal larger differences.
Abstract
Performance of the Precipitation Imaging Package (PIP) for estimating the snow water equivalent (SWE) is evaluated through a comparative study with the collocated National Oceanic and Atmospheric Administration National Weather Service snow stake field measurements. The PIP together with a vertically pointing radar, a weighing bucket gauge, and a laser-optical disdrometer was deployed at the NWS Marquette, Michigan, office building for a long-term field study supported by the National Aeronautics and Space Administration’s Global Precipitation Measurement mission Ground Validation program. The site was also equipped with a weather station. During the 2017/18 winter, the PIP functioned nearly uninterrupted at frigid temperatures accumulating 2345.8 mm of geometric snow depth over a total of 499 h. This long record consists of 30 events, and the PIP-retrieved and snow stake field measured SWE differed less than 15% in every event. Two of the major events with the longest duration and the highest accumulation are examined in detail. The particle mass with a given diameter was much lower during a shallow, colder, uniform lake-effect event than in the deep, less cold, and variable synoptic event. This study demonstrated that the PIP is a robust instrument for operational use, and is reliable for deriving the bulk properties of falling snow.
Abstract
Performance of the Precipitation Imaging Package (PIP) for estimating the snow water equivalent (SWE) is evaluated through a comparative study with the collocated National Oceanic and Atmospheric Administration National Weather Service snow stake field measurements. The PIP together with a vertically pointing radar, a weighing bucket gauge, and a laser-optical disdrometer was deployed at the NWS Marquette, Michigan, office building for a long-term field study supported by the National Aeronautics and Space Administration’s Global Precipitation Measurement mission Ground Validation program. The site was also equipped with a weather station. During the 2017/18 winter, the PIP functioned nearly uninterrupted at frigid temperatures accumulating 2345.8 mm of geometric snow depth over a total of 499 h. This long record consists of 30 events, and the PIP-retrieved and snow stake field measured SWE differed less than 15% in every event. Two of the major events with the longest duration and the highest accumulation are examined in detail. The particle mass with a given diameter was much lower during a shallow, colder, uniform lake-effect event than in the deep, less cold, and variable synoptic event. This study demonstrated that the PIP is a robust instrument for operational use, and is reliable for deriving the bulk properties of falling snow.