Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: Dongliang Yuan x
  • Refine by Access: All Content x
Clear All Modify Search
Dongliang Yuan

Abstract

The cold-water event along the southeast coast of the United States in the summer of 2003 is studied using satellite data combined with in situ observations. The analysis suggests that the cooling is produced by wind-driven coastal upwelling, which breaks the thermocline barrier in the summer of 2003. The strong and persistent southwesterly winds in the summer of 2003 play an important role of lifting the bottom isotherms up to the surface and away from the coast, generating persistent surface cooling in July–August 2003. Once the thermocline barrier is broken, the stratification in the nearshore region is weakened substantially, allowing further coastal cooling of large magnitudes by episodic southerly wind bursts or passage of coastally trapped waves at periods of a few days. These short-period winds or waves would otherwise have no effects on the surface temperature because of the strong thermocline barrier in summer if not for the low-frequency cooling produced by the persistent southwesterly winds.

Full access
Zheng Wang
and
Dongliang Yuan

Abstract

The nonlinear collision of two western boundary currents (WBCs) of Munk thickness L M colliding near a gap of width 2a is studied using a 1.5-layer, reduced-gravity, quasigeostrophic ocean model. The work is a continuation of our recent study on nonlinear collision of two equal-strength WBCs at a wide gap. It is found that, for narrow gaps, a < 5.7L M , and both of the WBCs fail to penetrate into the western basin due to the restriction of friction; for intermediate size gaps, 5.7L M a < 9.6L M , and multiple equilibrium states exist for the colliding WBCs: the penetrating state, the choking state, and the eddy-shedding state. The current system transits between them through a hysteresis procedure, with transitions at different Reynolds numbers from those in the equal-transport case. The stronger WBC tends to intrude more deeply into the western basin than the weaker WBC; for wide gaps, a > 9.6L M , and only penetrating and eddy-shedding states exist. No choking state is identified for either WBC. It is found that the critical gap width for the disappearance of the choking state decreases with the asymmetry of the WBC system. The theory is used to explain some of the circulation features at the entrance of the Indonesian Throughflow in the western Pacific Ocean recently observed with satellite-tracked surface drifters.

Full access
Y. Hsueh
and
Dongliang Yuan

Abstract

A vertically integrated model that incorporates horizontal temperature variations is used to study the circulation of the Yellow Sea in a wintertime period for which velocity and temperature measurements are available at several moorings locations along a central trough. The model features realistic bottom topography and is forced with wind stress and heat flux fields from 13 January to 22 February 1986. The model also incorporates, as a boundary condition, sea-level fluctuations derived from coastal and insular tide gauge stations along model boundaries in open waters.

The model reproduces well sea level fluctuations along the coasts of both China and Korea. The hindcast velocity time series, particularly for the north–south component, track those obtained from direct measurements at the moorings. The model momentum balance indicates that the northward flow in the trough is driven by a sea level setup to the south in response to northerly wind bursts in the winter monsoon. The sea-level fluctuations propagate around the Yellow Sea embayment in a counterclockwise sense and exhibit a northward increase in amplitude along both the China and Korea coasts, apparently due to the general shallowness of the northern reaches of the embayment. The lack of a suitable initial condition in temperature and the presence of large biases in the sea surface heat flux distribution preclude the hindcast of the temperature field. Yet trajectories of model fluid displacement confirm an overall northward transport of mass, and hence heat and salt, even though the northerly wind-pulse-dominated current fluctuates with a small mean.

While wintertime currents in the Yellow Sea appear dominated by the wind forcing, empirical orthogonal function analysis of model sea-level fluctuations attributes 48% of the variance to a mode whose time variation follows those of sea-level heights imposed along the open model boundaries. The mode with a time variation similar to that found in the wind stress magnitude time series accounts for only 28% of the variance. This suggests the domination of sea-level fluctuations by low-frequency fluctuations in the Kuroshio.

Full access
Zheng Wang
and
Dongliang Yuan

Abstract

The nonlinear collision of two western boundary currents (WBCs) of equal transport at a gap of the western boundary is studied using a 1.5-layer reduced-gravity quasigeostrophic ocean model. It is found that, when the gap (of width 2a) is narrow, a ≤ 7.3LM (LM the Munk thickness), neither of the WBCs can penetrate into the western basin because of the restriction of the viscous force. When 7.3LM < a < 9.0LM , both WBCs penetrate into the western basin for small transport and choke for large transport. When 9.0LM a ≤ 9.6LM , the two WBCs penetrate for small transport, choke for intermediate transport, and shed eddies periodically for large transport. When a > 9.6LM , no steady choking state is found. Instead, the WBCs have only two equilibrium states: the penetrating and the periodic eddy shedding states. A Hopf bifurcation is found for a > 9.0LM . The Reynolds number (Re) of the Hopf bifurcation is sensitive to the magnitude of γ(a/LM ) and the baroclinic deformation radius, being small for larger γ or deformation radius. In addition, a reverse Hopf bifurcations is identified in the decreased Re experiments, occurring at a smaller Re than that of the Hopf bifurcation. The Re of the reverse Hopf bifurcation is not sensitive to the magnitude of the baroclinic deformation radius.

Hysteresis behavior of the WBCs is found for a > 9.0LM , because of the existence of the Hopf and reverse Hopf bifurcations. In between them, steady penetrating or choking states coexist with eddy-shedding states. The steady states are found to be sensitive to perturbations of relative vorticity and can transit to periodic eddy-shedding states at the forcing of a mesoscale eddy.

Full access
Dongliang Yuan
and
Hailong Liu

Abstract

Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997–98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994.

The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.

Full access
Dongliang Yuan
and
Zheng Wang

Abstract

Hysteresis of a western boundary current (WBC) flowing by a wide gap of a western boundary and the dynamics of the WBC variations associated with the impingement of mesoscale eddies from the eastern side of the gap are studied using a 1.5-layer reduced-gravity quasigeostrophic ocean model. The study focuses on two issues not covered by existing studies: the effects of finite baroclinic deformation radii and time dependence perturbed by mesoscale eddies. The results of the study show that the hysteresis of the WBC of finite baroclinic deformation radii is not controlled by multiple steady-state balances of the quasigeostrophic vorticity equation. Instead, the hysteresis is controlled by the periodic penetrating and the leaping regimes of the vorticity balance. The regime of the vorticity balance inside the gap is dependent on the history of the WBC evolution, which gives rise to the hysteresis of the WBC path. Numerical experiments have shown that the parameter domain of the hysteresis is not sensitive to the baroclinic deformation radius. However, the domain of the periodic solution, which is determined by the lower Hopf bifurcation of the nonlinear system, is found to be sensitive to the magnitude of the baroclinic deformation radius. The lower Hopf bifurcation from steady penetration to periodic penetration is found to occur at lower Reynolds numbers for larger deformation radii. In general, the lower Hopf bifurcation stays outside the hysteresis domain of the Reynolds number. However, for very small deformation radii, the lower Hopf bifurcation falls inside the hysteresis domain, which results in the transition from the leaping to the penetrating regimes of the WBC to skip the periodic regime and hence the disappearance of the upper Hopf bifurcation.

Mesoscale eddies approaching the gap from the eastern basin are found to have significant impact on the WBC path inside the gap when the WBC is at a critical state along the hysteresis loop. Cyclonic (anticyclonic) eddies play the role of reducing (enhancing) the inertial advection of vorticity in the vicinity of the gap so that transitions of the WBC path from the leaping (periodic penetrating) to the periodic penetrating (leaping) regimes are induced. In addition, cyclonic eddies are able to induce transitions of the WBC from the periodic penetrating to the leaping regimes through enhancing the meridional advection by its right fling. The transitions are irreversible because of the nonlinear hysteresis and are found to be sensitive to the strength, size, and approaching path of the eddy.

Full access
Jing Wang
and
Dongliang Yuan

Abstract

The equatorial wave dynamics of sea level variations during negative Indian Ocean dipole (nIOD) events are investigated using the LICOM ocean general circulation model forced with the European Centre for Medium-Range Weather Forecast reanalysis wind stress and heat flux from 1990 to 2001. The work is a continuation of the study by Yuan and Liu, in which the equatorial wave dynamics during positive IOD events are investigated. The model has reproduced the sea level anomalies of satellite altimeter data well. Long equatorial waves extracted from the model output suggest two kinds of negative feedback during nIOD events: the western boundary reflection and the easterly wind bursts. During the strong 1998–99 nIOD event, the downwelling anomalies in the eastern Indian Ocean are terminated by persistent and strong upwelling Kelvin waves from the western boundary, which are reflected from the wind-forced equatorial Rossby waves over the southern central Indian Ocean. During the 1996–97 nIOD, however, the reflection of upwelling anomalies at the western boundary is terminated by the arrival of downwelling equatorial Rossby waves from the eastern boundary reflection in early 1997. Therefore, the negative feedback of this nIOD event is not provided by the western boundary reflection. The downwelling anomalies in the eastern basin during the 1996–97 nIOD event are terminated by easterly wind anomalies over the equatorial Indian Ocean in early 1997. The disclosed equatorial wave dynamics are important to the simulation and prediction of IOD evolution.

Full access
Dongliang Yuan
and
Y. Hsueh

Abstract

An assimilation of routine sea surface temperature observations is conducted to estimate the sea surface heat flux in the Yellow Sea during the winter of 1986. Ten-day mean SST compilations, published by the Japan Meteorological Agency, are used. The time window is from 0000 Japan Local Time (JLT) 21 January to 0000 JLT 21 February 1986. Because there are only three frames of the observed temperature available for the time window, only a steady-state distribution of the heat flux is determined. A tonguelike feature of the optimized heat flux distribution is consistent with the warm SST anomaly at the center of the Yellow Sea trough. The optimized heat flux generates improved simulation of the cooling trend of the temperature time series.

The variational method is the assimilation procedure employed. The developed scheme is able to optimize simultaneously the initial temperature condition and the sea surface heat flux without a priori knowledge of either. A coarse-resolution Hessian is used to evaluate errors of the assimilation.

Full access
Dongliang Yuan
and
Weiqing Han

Abstract

An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.

Full access
Dongliang Yuan
,
Hui Zhou
, and
Xia Zhao

Abstract

The authors’ previous dynamical study has suggested a link between the Indian and Pacific Ocean interannual climate variations through the transport variations of the Indonesian Throughflow. In this study, the consistency of this oceanic channel link with observations is investigated using correlation analyses of observed ocean temperature, sea surface height, and surface wind data. The analyses show significant lag correlations between the sea surface temperature anomalies (SSTA) in the southeastern tropical Indian Ocean in fall and those in the eastern Pacific cold tongue in the following summer through fall seasons, suggesting potential predictability of ENSO events beyond the period of 1 yr. The dynamics of this teleconnection seem not through the atmospheric bridge, because the wind anomalies in the far western equatorial Pacific in fall have insignificant correlations with the cold tongue anomalies at time lags beyond one season. Correlation analyses between the sea surface height anomalies (SSHA) in the southeastern tropical Indian Ocean and those over the Indo-Pacific basin suggest eastward propagation of the upwelling anomalies from the Indian Ocean into the equatorial Pacific Ocean through the Indonesian Seas. Correlations in the subsurface temperature in the equatorial vertical section of the Pacific Ocean confirm the propagation. In spite of the limitation of the short time series of observations available, the study seems to suggest that the ocean channel connection between the two basins is important for the evolution and predictability of ENSO.

Full access