Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Dongliang Yuan x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Dongliang Yuan
,
Hui Zhou
, and
Xia Zhao

Abstract

The authors’ previous dynamical study has suggested a link between the Indian and Pacific Ocean interannual climate variations through the transport variations of the Indonesian Throughflow. In this study, the consistency of this oceanic channel link with observations is investigated using correlation analyses of observed ocean temperature, sea surface height, and surface wind data. The analyses show significant lag correlations between the sea surface temperature anomalies (SSTA) in the southeastern tropical Indian Ocean in fall and those in the eastern Pacific cold tongue in the following summer through fall seasons, suggesting potential predictability of ENSO events beyond the period of 1 yr. The dynamics of this teleconnection seem not through the atmospheric bridge, because the wind anomalies in the far western equatorial Pacific in fall have insignificant correlations with the cold tongue anomalies at time lags beyond one season. Correlation analyses between the sea surface height anomalies (SSHA) in the southeastern tropical Indian Ocean and those over the Indo-Pacific basin suggest eastward propagation of the upwelling anomalies from the Indian Ocean into the equatorial Pacific Ocean through the Indonesian Seas. Correlations in the subsurface temperature in the equatorial vertical section of the Pacific Ocean confirm the propagation. In spite of the limitation of the short time series of observations available, the study seems to suggest that the ocean channel connection between the two basins is important for the evolution and predictability of ENSO.

Full access
Hui Zhou
,
Dongliang Yuan
,
Lina Yang
,
Xiang Li
, and
William Dewar

Abstract

The meridional geostrophic transport (MGT) in the interior tropical North Pacific Ocean is estimated based on global ocean heat and salt content data. The decadal variations of the zonally and vertically integrated MGT in the tropical North Pacific Ocean are found to precede the Pacific decadal oscillation (PDO) by 1–3 years. The dynamics of the MGT are analyzed based on Sverdrup theory. It is found that the total meridional transport variability (MGT plus Ekman) is dominated by the MGT variability having positive correlations with the PDO index. The Sverdrup transports differ from the total meridional transport significantly and have insignificant correlations with PDO index, suggesting that the MGT variability is not controlled by the Sverdrup dynamics. In comparison, the simulated meridional transport variability in the models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and the Ocean General Circulation Model for the Earth Simulator are dominated by the Sverdrup transports, having insignificant correlations with the simulated PDO indices. The comparison suggests that the non-Sverdrup component in the MGT is important for the predictability of PDO and that significant deficiencies exist in these models in simulating a realistic structure of the tropical ocean gyre variability and predicting the decadal climate variations associated with it.

Full access
Guang Yang
,
Xia Zhao
,
Dongliang Yuan
,
Yazhou Zhang
,
Lin Liu
, and
Shiqiu Peng

Abstract

Previous studies have indicated that boreal winter-to-spring sea surface temperature anomalies (SSTA) over the tropical Atlantic or Indian Ocean can trigger the central-Pacific (CP) type of ENSO in the following winter due to winds over the western Pacific. Here, with the aid of observational data and CMIP5 model simulations, we demonstrate that the ability of the winter-to-spring north tropical Atlantic (NTA) SSTA or Indian Ocean Basin (IOB) mode to initiate CP ENSO events in the following winter may strongly depend on each other. Most warming events of the IOB and NTA, which are followed by CP La Niña events, are concomitant. The synergistic effect of the IOB and NTA SSTA may produce greater CP ENSO events in the subsequent winter via Walker circulation adjustments. The impacts between warming and cooling events of the IOB and NTA SSTA are asymmetric. IOB and NTA warmings appear to contribute to the subsequent CP La Niña development, which is much greater than IOB and NTA cooling contributing to CP El Niño. Overall, a combination of the IOB and NTA SSTA precursors may improve predictions of La Niña events.

Significance Statement

Although boreal winter-to-spring sea surface temperature anomalies over the tropical Atlantic or Indian Ocean can trigger central-Pacific (CP) ENSO in the following winter, it is not yet clear whether the effects of these two basins are independent. The purpose of this study is to better understand the joint effect of these two basins on CP ENSO events. We demonstrate that the ability of the north tropical Atlantic (NTA) SSTA to initiate CP ENSO events in the following winter may strongly depend on the state of the Indian Ocean Basin mode (IOB). The synergistic impact of these two basins may produce stronger CP ENSO events. These results highlight the role of three-ocean interactions in ENSO diversity and prediction.

Restricted access
Dongliang Yuan
,
Jing Wang
,
Tengfei Xu
,
Peng Xu
,
Zhou Hui
,
Xia Zhao
,
Yihua Luan
,
Weipeng Zheng
, and
Yongqiang Yu

Abstract

Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.

Full access