Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Doug Smith x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Amy Solomon
,
Lisa Goddard
,
Arun Kumar
,
James Carton
,
Clara Deser
,
Ichiro Fukumori
,
Arthur M. Greene
,
Gabriele Hegerl
,
Ben Kirtman
,
Yochanan Kushnir
,
Matthew Newman
,
Doug Smith
,
Dan Vimont
,
Tom Delworth
,
Gerald A. Meehl
, and
Timothy Stockdale

Abstract

Given that over the course of the next 10–30 years the magnitude of natural decadal variations may rival that of anthropogenically forced climate change on regional scales, it is envisioned that initialized decadal predictions will provide important information for climate-related management and adaptation decisions. Such predictions are presently one of the grand challenges for the climate community. This requires identifying those physical phenomena—and their model equivalents—that may provide additional predictability on decadal time scales, including an assessment of the physical processes through which anthropogenic forcing may interact with or project upon natural variability. Such a physical framework is necessary to provide a consistent assessment (and insight into potential improvement) of the decadal prediction experiments planned to be assessed as part of the IPCC's Fifth Assessment Report.

Full access
Gerald A. Meehl
,
Lisa Goddard
,
George Boer
,
Robert Burgman
,
Grant Branstator
,
Christophe Cassou
,
Susanna Corti
,
Gokhan Danabasoglu
,
Francisco Doblas-Reyes
,
Ed Hawkins
,
Alicia Karspeck
,
Masahide Kimoto
,
Arun Kumar
,
Daniela Matei
,
Juliette Mignot
,
Rym Msadek
,
Antonio Navarra
,
Holger Pohlmann
,
Michele Rienecker
,
Tony Rosati
,
Edwin Schneider
,
Doug Smith
,
Rowan Sutton
,
Haiyan Teng
,
Geert Jan van Oldenborgh
,
Gabriel Vecchi
, and
Stephen Yeager

This paper provides an update on research in the relatively new and fast-moving field of decadal climate prediction, and addresses the use of decadal climate predictions not only for potential users of such information but also for improving our understanding of processes in the climate system. External forcing influences the predictions throughout, but their contributions to predictive skill become dominant after most of the improved skill from initialization with observations vanishes after about 6–9 years. Recent multimodel results suggest that there is relatively more decadal predictive skill in the North Atlantic, western Pacific, and Indian Oceans than in other regions of the world oceans. Aspects of decadal variability of SSTs, like the mid-1970s shift in the Pacific, the mid-1990s shift in the northern North Atlantic and western Pacific, and the early-2000s hiatus, are better represented in initialized hindcasts compared to uninitialized simulations. There is evidence of higher skill in initialized multimodel ensemble decadal hindcasts than in single model results, with multimodel initialized predictions for near-term climate showing somewhat less global warming than uninitialized simulations. Some decadal hindcasts have shown statistically reliable predictions of surface temperature over various land and ocean regions for lead times of up to 6–9 years, but this needs to be investigated in a wider set of models. As in the early days of El Niño–Southern Oscillation (ENSO) prediction, improvements to models will reduce the need for bias adjustment, and increase the reliability, and thus usefulness, of decadal climate predictions in the future.

Full access

Decadal Prediction

Can It Be Skillful?

Gerald A. Meehl
,
Lisa Goddard
,
James Murphy
,
Ronald J. Stouffer
,
George Boer
,
Gokhan Danabasoglu
,
Keith Dixon
,
Marco A. Giorgetta
,
Arthur M. Greene
,
Ed Hawkins
,
Gabriele Hegerl
,
David Karoly
,
Noel Keenlyside
,
Masahide Kimoto
,
Ben Kirtman
,
Antonio Navarra
,
Roger Pulwarty
,
Doug Smith
,
Detlef Stammer
, and
Timothy Stockdale

A new field of study, “decadal prediction,” is emerging in climate science. Decadal prediction lies between seasonal/interannual forecasting and longer-term climate change projections, and focuses on time-evolving regional climate conditions over the next 10–30 yr. Numerous assessments of climate information user needs have identified this time scale as being important to infrastructure planners, water resource managers, and many others. It is central to the information portfolio required to adapt effectively to and through climatic changes. At least three factors influence time-evolving regional climate at the decadal time scale: 1) climate change commitment (further warming as the coupled climate system comes into adjustment with increases of greenhouse gases that have already occurred), 2) external forcing, particularly from future increases of greenhouse gases and recovery of the ozone hole, and 3) internally generated variability. Some decadal prediction skill has been demonstrated to arise from the first two of these factors, and there is evidence that initialized coupled climate models can capture mechanisms of internally generated decadal climate variations, thus increasing predictive skill globally and particularly regionally. Several methods have been proposed for initializing global coupled climate models for decadal predictions, all of which involve global time-evolving three-dimensional ocean data, including temperature and salinity. An experimental framework to address decadal predictability/prediction is described in this paper and has been incorporated into the coordinated Coupled Model Intercomparison Model, phase 5 (CMIP5) experiments, some of which will be assessed for the IPCC Fifth Assessment Report (AR5). These experiments will likely guide work in this emerging field over the next 5 yr.

Full access
William J. Merryfield
,
Johanna Baehr
,
Lauriane Batté
,
Emily J. Becker
,
Amy H. Butler
,
Caio A. S. Coelho
,
Gokhan Danabasoglu
,
Paul A. Dirmeyer
,
Francisco J. Doblas-Reyes
,
Daniela I. V. Domeisen
,
Laura Ferranti
,
Tatiana Ilynia
,
Arun Kumar
,
Wolfgang A. Müller
,
Michel Rixen
,
Andrew W. Robertson
,
Doug M. Smith
,
Yuhei Takaya
,
Matthias Tuma
,
Frederic Vitart
,
Christopher J. White
,
Mariano S. Alvarez
,
Constantin Ardilouze
,
Hannah Attard
,
Cory Baggett
,
Magdalena A. Balmaseda
,
Asmerom F. Beraki
,
Partha S. Bhattacharjee
,
Roberto Bilbao
,
Felipe M. de Andrade
,
Michael J. DeFlorio
,
Leandro B. Díaz
,
Muhammad Azhar Ehsan
,
Georgios Fragkoulidis
,
Sam Grainger
,
Benjamin W. Green
,
Momme C. Hell
,
Johnna M. Infanti
,
Katharina Isensee
,
Takahito Kataoka
,
Ben P. Kirtman
,
Nicholas P. Klingaman
,
June-Yi Lee
,
Kirsten Mayer
,
Roseanna McKay
,
Jennifer V. Mecking
,
Douglas E. Miller
,
Nele Neddermann
,
Ching Ho Justin Ng
,
Albert Ossó
,
Klaus Pankatz
,
Simon Peatman
,
Kathy Pegion
,
Judith Perlwitz
,
G. Cristina Recalde-Coronel
,
Annika Reintges
,
Christoph Renkl
,
Balakrishnan Solaraju-Murali
,
Aaron Spring
,
Cristiana Stan
,
Y. Qiang Sun
,
Carly R. Tozer
,
Nicolas Vigaud
,
Steven Woolnough
, and
Stephen Yeager
Full access