Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: Douglas R. Allen x
  • Refine by Access: All Content x
Clear All Modify Search
Douglas R. Allen

The genesis of meteorology at the University of Chicago is reviewed in commemoration of the 60th anniversary of the founding of the Institute of Meteorology. The Institute of Meteorology was founded in October 1940 under the leadership of Carl Rossby and Horace Byers. Although previous attempts failed due to lack of resources, the imminent need for meteorologists in aviation and long-range weather forecasting, particularly for the nation's military needs, provided sufficient motivation for the program, and a $15,000 donation by Sewell Avery provided the necessary funds to get the program started. This article adds to Byers' 1975 account of the founding of the Institute by documenting the exchange of letters in 1939 between C. Rossby, Karl T. Compton (president of Massachusetts Institute of Technology), Arthur H. Compton (professor of Physics at Chicago), and Henry Gale (dean of Physical Sciences at Chicago) regarding the possibility of establishing a meteorology program at Chicago.

Full access
Douglas R. Allen and Noboru Nakamura

Abstract

Area equivalent latitude based on potential vorticity (PV) is a widely used diagnostic for isentropic transport in the stratosphere and upper troposphere. Here, an alternate method for calculating equivalent latitude is explored, namely, a numerical synthesis of a PV-like tracer from a long-term integration of the advection–diffusion equation on isentropic surfaces. It is found that the tracer equivalent latitude (TrEL) behaves much like the traditional PV equivalent latitude (PVEL) despite the simplified governing physics; this is evidenced by examining the kinematics of the Arctic lower stratospheric vortex. Yet in some cases TrEL performs markedly better as a coordinate for long-lived trace species such as ozone. These instances include analysis of lower stratospheric ozone during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE) campaign and three-dimensional reconstruction of total column ozone during November–December 1999 from fitted ozone-equivalent latitude relationship. It is argued that the improvement is due to the tracer being free from the diagnostic errors and certain diabatic processes that affect PV. The sensitivity of TrEL to spatial and temporal resolution, advection scheme, and driving winds is also examined.

Full access
Douglas R. Allen, Michael D. Fromm, George P. Kablick III, and Gerald E. Nedoluha

Abstract

The Australian bushfires of 2019/20 produced an unusually large number of pyrocumulonimbus (pyroCb) that injected huge amounts of smoke into the lower stratosphere. The pyroCbs from 29 December 2019 to 4 January 2020 were particularly intense, producing hemispheric-wide aerosol that persisted for months. One plume from this so-called Australian New Year (ANY) event evolved into a stratospheric aerosol mass ~1000 km across and several kilometers thick. This plume initially moved eastward toward South America in January, then reversed course and moved westward passing south of Australia in February and eventually reached South Africa in early March. The peculiar motion was related to the steady rise in plume potential temperature of ~8 K day−1 in January and ~6 K day−1 in February, due to local heating by smoke absorption of solar radiation. This heating resulted in a vertical temperature anomaly dipole, a positive potential vorticity (PV) anomaly, and anticyclonic circulation. We call this dynamical component of the smoke plume “smoke with induced rotation and lofting” (SWIRL). This study uses Navy Global Environmental Model (NAVGEM) analyses to detail the SWIRL structure over 2 months. The main diagnostic tool is an anticyclone edge calculation based on the scalar Q diagnostic. This provides the framework for calculating the time evolution of various SWIRL properties: PV anomaly, streamfunction, horizontal size, vertical thickness, flow speed, and tilt. In addition, we examine the temperature anomaly dipole, the SWIRL interaction with the large-scale wind shear, and the ozone anomaly associated with lofting of air from the lower to the middle stratosphere.

Full access
Sergey Frolov, Douglas R. Allen, Craig H. Bishop, Rolf Langland, Karl W. Hoppel, and David D. Kuhl

Abstract

The local ensemble tangent linear model (LETLM) provides an alternative method for creating the tangent linear model (TLM) and adjoint of a nonlinear model that promises to be easier to maintain and more computationally scalable than earlier methods. In this paper, we compare the ability of the LETLM to predict the difference between two nonlinear trajectories of the Navy’s global weather prediction model at low resolution (2.5° at the equator) with that of the TLM currently used in the Navy’s four-dimensional variational (4DVar) data assimilation scheme. When compared to the pair of nonlinear trajectories, the traditional TLM and the LETLM have improved skill relative to persistence everywhere in the atmosphere, except for temperature in the planetary boundary layer. In addition, the LETLM was, on average, more accurate than the traditional TLM (error reductions of about 20% in the troposphere and 10% overall). Sensitivity studies showed that the LETLM was most sensitive to the number of ensemble members, with the performance gradually improving with increased ensemble size up to the maximum size attempted (400). Inclusion of physics in the LETLM ensemble leads to a significantly improved representation of the boundary layer winds (error reductions of up to 50%), in addition to improved winds and temperature in the free troposphere and in the upper stratosphere/lower mesosphere. The computational cost of the LETLM was dominated by the cost of ensemble propagation. However, the LETLM can be precomputed before the 4DVar data assimilation algorithm is executed, leading to a significant computational advantage.

Full access
Yvan J. Orsolini, Cora E. Randall, Gloria L. Manney, and Douglas R. Allen

Abstract

The 2002 Southern Hemisphere final warming occurred early, following an unusually active winter and the first recorded major warming in the Antarctic. The breakdown of the stratospheric polar vortex in October and November 2002 is examined using new satellite observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the European Space Agency (ESA) Environment Satellite (ENVISAT) and meteorological analyses, both high-resolution fields from the European Centre for Medium-Range Weather Forecasts and the coarser Met Office analyses. The results derived from MIPAS observations are compared to measurements and inferences from well-validated solar occultation satellite instruments [Halogen Occultation Experiment (HALOE), Polar Ozone and Aerosol Measurement III (POAM III), and Stratospheric Aerosol and Gas Experiments II and III (SAGE II and III)] and to finescale tracer fields reconstructed by transporting trace gases based on MIPAS or climatological data using a reverse-trajectory method. These comparisons confirm the features in the MIPAS data and the interpretation of the evolution of the flow during the vortex decay revealed by those features. Mapped ozone and water vapor from MIPAS and the analyzed isentropic potential vorticity vividly display the vortex breakdown, which occurred earlier than usual. A large tongue of vortex air was pulled out westward and coiled up in an anticyclone, while the vortex core remnant shrank and drifted eastward and equatorward over the South Atlantic. By roughly mid-November, the vortex remnant at 10 mb had shrunk below scales resolved by the satellite observations, while a vortex core remained in the lower stratosphere.

Full access
Douglas R. Allen, Karl W. Hoppel, Gerald E. Nedoluha, Stephen D. Eckermann, and Cory A. Barton

Abstract

Gravity wave (GW) momentum and energy deposition are large components of the momentum and heat budgets of the stratosphere and mesosphere, affecting predictability across scales. Since weather and climate models cannot resolve the entire GW spectrum, GW parameterizations are required. Tuning these parameterizations is time-consuming and must be repeated whenever model configurations are changed. We introduce a self-tuning approach, called GW parameter retrieval (GWPR), applied when the model is coupled to a data assimilation (DA) system. A key component of GWPR is a linearized model of the sensitivity of model wind and temperature to the GW parameters, which is calculated using an ensemble of nonlinear forecasts with perturbed parameters. GWPR calculates optimal parameters using an adaptive grid search that reduces DA analysis increments via a cost-function minimization. We test GWPR within the Navy Global Environmental Model (NAVGEM) using three latitude-dependent GW parameters: peak momentum flux, phase-speed width of the Gaussian source spectrum, and phase-speed weighting relative to the source-level wind. Compared to a baseline experiment with fixed parameters, GWPR reduces analysis increments and improves 5-day mesospheric forecasts. Relative to the baseline, retrieved parameters reveal enhanced source-level fluxes and westward shift of the wave spectrum in the winter extratropics, which we relate to seasonal variations in frontogenesis. The GWPR reduces stratospheric increments near 60°S during austral winter, compensating for excessive baseline nonorographic GW drag. Tropical sensitivity is weaker due to significant absorption of GW in the stratosphere, resulting in less confidence in tropical GWPR values.

Restricted access
Karl W. Hoppel, Stephen D. Eckermann, Lawrence Coy, Gerald E. Nedoluha, Douglas R. Allen, Steven D. Swadley, and Nancy L. Baker

Abstract

Upper atmosphere sounding (UAS) channels of the Special Sensor Microwave Imager/Sounder (SSMIS) were assimilated using a high-altitude version of the Navy Global Environmental Model (NAVGEM) in order to investigate their potential for operational forecasting from the surface to the mesospause. UAS radiances were assimilated into NAVGEM using the new Community Radiative Transfer Model (CRTM) that accounts for Zeeman line splitting by geomagnetic fields. UAS radiance data from April 2010 to March 2011 are shown to be in good agreement with coincident temperature measurements from the Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) instrument that were used to simulate UAS brightness temperatures. Four NAVGEM experiments were performed during July 2010 that assimilated (i) no mesospheric observations, (ii) UAS data only, (iii) SABER and Microwave Limb Sounder (MLS) mesospheric temperatures only, and (iv) SABER, MLS, and UAS data. Zonal mean temperatures and observation − forecast differences for the UAS-only and SABER+MLS experiments are similar throughout most of the mesosphere, and show large improvements over the experiment assimilating no mesospheric observations, proving that assimilation of UAS radiances can provide a reliable large-scale constraint throughout the mesosphere for operational, high-altitude analysis. This is confirmed by comparison of solar migrating tides and the quasi-two-day wave in the mesospheric analyses. The UAS-only experiment produces realistic tidal and two-day wave amplitudes in the summer mesosphere in agreement with the experiments assimilating MLS and SABER observations, whereas the experiment with no mesospheric observations produces excessively strong mesospheric winds and two-day wave amplitudes.

Full access
Douglas R. Allen, Craig H. Bishop, Sergey Frolov, Karl W. Hoppel, David D. Kuhl, and Gerald E. Nedoluha

Abstract

An ensemble-based tangent linear model (TLM) is described and tested in data assimilation experiments using a global shallow-water model (SWM). A hybrid variational data assimilation system was developed with a 4D variational (4DVAR) solver that could be run either with a conventional TLM or a local ensemble TLM (LETLM) that propagates analysis corrections using only ensemble statistics. An offline ensemble Kalman filter (EnKF) is used to generate and maintain the ensemble. The LETLM uses data within a local influence volume, similar to the local ensemble transform Kalman filter, to linearly propagate the state variables at the central grid point. After tuning the LETLM with offline 6-h forecasts of analysis corrections, cycling experiments were performed that assimilated randomly located SWM height observations, based on a truth run with forced bottom topography. The performance using the LETLM is similar to that of the conventional TLM, suggesting that a well-constructed LETLM could free 4D variational methods from dependence on conventional TLMs. This is a first demonstration of the LETLM application within a context of a hybrid-4DVAR system applied to a complex two-dimensional fluid dynamics problem. Sensitivity tests are included that examine LETLM dependence on several factors including length of cycling window, size of analysis correction, spread of initial ensemble perturbations, ensemble size, and model error. LETLM errors are shown to increase linearly with correction size in the linear regime, while TLM errors increase quadratically. As nonlinearity (or forecast model error) increases, the two schemes asymptote to the same solution.

Full access
Douglas R. Allen, Lawrence Coy, Stephen D. Eckermann, John P. McCormack, Gloria L. Manney, Timothy F. Hogan, and Young-Joon Kim

Abstract

A high-altitude version of the Navy Operational Global Atmospheric Prediction System (NOGAPS) spectral forecast model is used to simulate the unusual September 2002 Southern Hemisphere stratospheric major warming. Designated as NOGAPS-Advanced Level Physics and High Altitude (NOGAPS-ALPHA), this model extends from the surface to 0.005 hPa (∼85 km altitude) and includes modifications to multiple components of the operational NOGAPS system, including a new radiative heating scheme, middle-atmosphere gravity wave drag parameterizations, hybrid vertical coordinate, upper-level meteorological initialization, and radiatively active prognostic ozone with parameterized photochemistry. NOGAPS-ALPHA forecasts (hindcasts) out to 6 days capture the main features of the major warming, such as the zonal mean wind reversal, planetary-scale wave amplification, large upward Eliassen–Palm (EP) fluxes, and splitting of the polar vortex in the middle stratosphere. Forecasts beyond 6 days have reduced upward EP flux in the lower stratosphere, reduced amplitude of zonal wavenumbers 2 and 3, and a middle stratospheric vortex that does not split. Three-dimensional EP-flux diagnostics in the troposphere reveal that the longer forecasts underestimate upward-propagating planetary wave energy emanating from a significant blocking pattern over the South Atlantic that played a large role in forcing the major warming. Forecasts of less than 6 days are initialized with the blocking in place, and therefore are not required to predict the blocking onset. For a more thorough skill assessment, NOGAPS-ALPHA forecasts over 3 weeks during September–October 2002 are compared with operational NOGAPS 5-day forecasts made at the time. NOGAPS-ALPHA forecasts initialized with 2002 operational NOGAPS analyses show a modest improvement in skill over the NOGAPS operational forecasts. An additional, larger improvement is obtained when NOGAPS-ALPHA is initialized with reanalyzed 2002 fields produced with the currently operational (as of October 2003) Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS). Thus the combination of higher model top, better physical parameterizations, and better initial conditions all yield improved forecasting skill over the NOGAPS forecasts issued operationally at the time.

Full access
Gloria L. Manney, Douglas R. Allen, Kirstin Krüger, Barbara Naujokat, Michelle L. Santee, Joseph L. Sabutis, Steven Pawson, Richard Swinbank, Cora E. Randall, Adrian J. Simmons, and Craig Long

Abstract

Several meteorological datasets, including U.K. Met Office (MetO), European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and NASA’s Goddard Earth Observation System (GEOS-4) analyses, are being used in studies of the 2002 Southern Hemisphere (SH) stratospheric winter and Antarctic major warming. Diagnostics are compared to assess how these studies may be affected by the meteorological data used. While the overall structure and evolution of temperatures, winds, and wave diagnostics in the different analyses provide a consistent picture of the large-scale dynamics of the SH 2002 winter, several significant differences may affect detailed studies. The NCEP–NCAR reanalysis (REAN) and NCEP–Department of Energy (DOE) reanalysis-2 (REAN-2) datasets are not recommended for detailed studies, especially those related to polar processing, because of lower-stratospheric temperature biases that result in underestimates of polar processing potential, and because their winds and wave diagnostics show increasing differences from other analyses between ∼30 and 10 hPa (their top level). Southern Hemisphere polar stratospheric temperatures in the ECMWF 40-Yr Re-analysis (ERA-40) show unrealistic vertical structure, so this long-term reanalysis is also unsuited for quantitative studies. The NCEP/Climate Prediction Center (CPC) objective analyses give an inferior representation of the upper-stratospheric vortex. Polar vortex transport barriers are similar in all analyses, but there is large variation in the amount, patterns, and timing of mixing, even among the operational assimilated datasets (ECMWF, MetO, and GEOS-4). The higher-resolution GEOS-4 and ECMWF assimilations provide significantly better representation of filamentation and small-scale structure than the other analyses, even when fields gridded at reduced resolution are studied. The choice of which analysis to use is most critical for detailed transport studies (including polar process modeling) and studies involving synoptic evolution in the upper stratosphere. The operational assimilated datasets are better suited for most applications than the NCEP/CPC objective analyses and the reanalysis datasets (REAN/REAN-2 and ERA-40).

Full access