Search Results

You are looking at 1 - 10 of 29 items for :

  • Author or Editor: Elizabeth A. Ritchie x
  • Refine by Access: All Content x
Clear All Modify Search
Lesley A. Leary
and
Elizabeth A. Ritchie

Abstract

Lightning flashes in convective tropical clusters of the eastern North Pacific Ocean are detected by the Long-Range Lightning Detection Network and are analyzed for temporal patterns in electrical activity. The rates of lightning flash discharge in the 2006 season are analyzed for both tropical cyclones and nondeveloping cloud clusters to 1) determine if there is a difference in the convective activity of these two populations and 2) find a level of electrical activity that constitutes development in a particular system. Convective activity is associated with tropical cyclogenesis and thus we use the rate of electrical discharge as a proxy for convection associated with the likelihood of organization of individual cloud clusters into a tropical depression strength system. On the basis of the rates of lightning flashes in the cloud clusters, four levels of development are defined, ranging from non- and partially developing to fully developing cloud clusters. The levels of development are further supported by the analysis of other remotely sensed observations, such as surface scatterometer winds, that allow for the description of the mesoscale and large-scale circulation patterns in which the cloud clusters are embedded. It is found that lightning flash rates distinguish those cloud clusters that do not fully develop into tropical depressions from those that do. Receiver operating characteristic curves for these groupings are calculated, and a level of flash rate can be chosen that gives a probability of detection of 67% for a false-alarm rate of 24%.

Full access
Difei Deng
and
Elizabeth A. Ritchie

Abstract

A dataset of 88 recurving western North Pacific tropical cyclones from 2004 to 2015 is investigated for rainfall characteristics during their period of recurvature. The TCs are categorized into two groups based on different large-scale patterns from empirical orthogonal function analysis. Group 1 is characterized by an intense midlatitude baroclinic zone and close distance between the zone and TC, while Group 2 is characterized by a weaker midlatitude baroclinic zone and more remote distance between the zone and TC at the time of recurvature. The results show the large-scale environment has substantial impact on TC rainfall patterns. In Group 1, as the TC approaches and is embedded into the baroclinic zone, a relatively strong interaction between the TC and midlatitudes occurs, which is reflected by a rapid increase of environmental vertical wind shear and TC translation speed, the alignment of the shear vector and motion vector, and a sharp contrast of temperature and moisture. Higher rainfall and wider coverage of rainfall tends to be produced along the track after recurvature, and the rainfall pattern turns from a right-of-track (ROT) to a left-of-track (LOT) preference. Conversely, in Group 2, a relatively weak interaction between the TC and midlatitude circulation occurs, which is reflected by weaker vertical wind shear and slower TC motion, a separation of the shear vector and motion vector, and a weak gradient of temperature and moisture. The corresponding rainfall swath for Group 2 exhibits a narrower rainfall swath after recurvature. The rain pattern changes from a LOT to ROT preference.

Full access
Elizabeth A. Ritchie
and
Greg J. Holland

Abstract

Five characteristic, low-level, large-scale dynamical patterns associated with tropical cyclogenesis in the western North Pacific basin are examined along with their capacity to generate the type of mesoscale convective systems that precede genesis. An 8-yr analysis set for the region is used to identify, and create composites for, the five characteristic patterns of monsoon shear line, monsoon confluence region, monsoon gyre, easterly waves, and Rossby energy dispersion. This brings out the common processes that contribute to tropical cyclogenesis within that pattern, which are described in detail.

A 3-yr set of satellite data is then used to analyze the mesoscale convective system activity for all cases of genesis in that period and to stratify based on the above large-scale patterns. It is found that mesoscale convective systems develop in all cases of genesis except one. Seventy percent of cases developed mesoscale convective systems at more than one time during the genesis period and 44% of cases developed multiple mesoscale convective systems at a single time. Stratification by pattern type indicates some differentiation in mesoscale convective activity and it is inferred that this is due to the large-scale processes. Two of the five patterns, the monsoon shear line and the monsoon confluence region, had more than the average amount of mesoscale convective activity during the genesis period. These patterns also account for 70% of the total genesis events in the 8-yr period. The analysis for the other three patterns exhibit less mesoscale convective system activity during genesis. This may indicate either that genesis processes for these patterns are not as dominated by mesoscale convective system activity, or that genesis occurs more rapidly in these cases.

Full access
William M. Frank
and
Elizabeth A. Ritchie

Abstract

Numerical simulations of tropical-cyclone-like vortices are performed to analyze the effects of unidirectional vertical wind shear and translational flow upon the organization of convection within a hurricane’s core region and upon the intensity of the storm. A series of dry and moist simulations is performed using the Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model version 5 (MM5) with idealized initial conditions. The dry simulations are designed to determine the patterns of forced ascent that occur as the vortex responds to imposed vertical wind shear and translational flow, and the mechanisms that modulate the vertical velocity field are explored. The moist simulations are initialized with the same initial conditions as the dry runs but with a cumulus parameterization and explicit moisture scheme activated. The moist simulations are compared to the dry runs in order to test the hypothesis that the forced vertical circulation modes modulate the convection and hence latent heat release in the hurricane core, as well as to evaluate the net effect of the imposed environmental flow on the storm intensity and structure.

The results indicate that the pattern of convection in the storm’s core is strongly influenced by vertical wind shear, and to comparable degree by boundary layer friction. In the early stages of moist simulations, typical of the tropical depression stage, the regions of forced ascent and the mechanisms that cause them are similar to those in the dry runs. However, once the moist storm runs deepen enough to develop saturation in part of the eyewall, the patterns of vertical motion and associated rainfall differ between the paired dry and moist runs with identical initial conditions. The dry runs tend to produce a strong, deep region of ascent in the sector of the storm that lies downshear right of the center. The moist runs begin similarly, but as the storms intensify they strongly favor upward motion and rainfall downshear left of the center.

It appears that the vertical motion patterns in the dry and moist simulations are dominated by similar adiabatic lifting mechanisms prior to the development of partial eyewall saturation. Once the moist runs reach saturation, this adiabatic lifting mechanism no longer occurs due to the latent heat release within the ascending air. Hence, the patterns of forced ascent in the dry runs should be relevant for understanding patterns of convection in loosely organized systems such as tropical depressions, but not in mature hurricanes. The rainfall patterns produced by the moist simulations are in good agreement with recent observational analyses of the relationships between rainfall distribution and vertical wind shear in Atlantic hurricanes.

Full access
Elizabeth A. Ritchie
and
William M. Frank

Abstract

Numerical simulations of tropical cyclones are performed to examine the effects of a variable Coriolis parameter on the structure and intensity of hurricanes. The simulations are performed using the nonhydrostatic fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model using a 5-km fine mesh and fully explicit representation of moist processes. When a variable Conolis parameter ( f ) environment is applied to a mature tropical cyclone, a persistent north-northwesterly shear develops over the storm center as a result of an interaction between the primary circulation of the storm and the gradient in absolute vorticity. As a result, the variable-f storm quickly develops a persistent wavenumber-1 asymmetry in its inner-core structure with upward motion and rainfall concentrated on the left side of the shear looking downshear, in agreement with earlier studies. In comparison, the constant-f storm develops weak transient asymmetries in structure that are only partially related to a weak vertical wind shear. As a result, it is found that the tropical cyclone with variable f intensifies slightly more slowly than that with constant f, and reaches a final intensity that is about 5 mb weaker. It is argued that this “beta shear” is not adequately represented in large-scale analyses and so does not figure into calculations of environmental shear. Although the effect of the beta shear on the tropical cyclone intensity seems small by itself, when combined with the environmental shear it can produce a large net shear or it can reduce an environmental shear below the apparent threshold to impact storm intensity. If this result proves to be generally true, then the presence of an additional overlooked beta shear may well explain differences in the response of tropical cyclone intensification to westerly versus easterly shear regimes.

Full access
Elizabeth A. Ritchie
and
Greg J. Holland

Abstract

The development of Typhoon Irving is investigated using a variety of data, including special research aircraft data from the Tropical Cyclone Motion (TCM-92) experiment, objective analyses, satellite data, and traditional surface and sounding data. The development process is treated as a dry-adiabatic vortex dynamics problem, and it is found that environmental and mesoscale dynamics mutually enhance each other in a cooperative interaction during cyclone formation. Synoptic-scale interactions result in the evolution of the hostile environment toward more favorable conditions for storm development. Mesoscale interactions with the low-level, large-scale circulations and with other midlevel, mesoscale features result in development of vorticity in the midlevels and enhancement of the low-level vorticity associated with the developing surface cyclone.

Multiple developments of mesoscale convective systems after the storm reaches tropical depression strength suggests both an increase in low-level confluence and a tendency toward recurrent development of associated mesoscale convective vortices. This is observed in both aircraft data and satellite imagery where subsequent interactions, including mergers with the low-level, tropical depression vortex, are observed. A contour dynamics experiment suggests that the movement of mesoscale convective systems in satellite imagery corresponds well to the movement of their associated midlevel vortices. Results from a simple baroclinic experiment show that the midlevel vortices affect the large-scale, low-level circulation in two ways: 1) initially, interactions between midlevel vortices produce a combined vortex of greater depth; 2) interaction between midlevel vortices and the low-level circulation produces a development downward of the midlevel vorticity. This strengthens the surface vortex and develops a more cohesive vortex that extends from the surface through the midtroposphere.

Full access
Elizabeth A. Ritchie
and
Russell L. Elsberry

Abstract

The contribution that a mesoscale convective vortex that developed within the circulation of Typhoon Robyn (1993) may have had to a significant tropical cyclone track change is simulated with a mesoscale model using initial conditions that approximate the circulations measured by aircraft during the Tropical Cyclone Motion (TCM-93) field experiment. A dry version of the PSU–NCAR Mesoscale Model is used to first investigate the dynamic aspects of the interaction. A deceleration of about 2 m s−1 and then more northward movement, similar to that observed for Typhoon Robyn, could have been produced by an interaction with the mesoscale convective vortex of the type modeled in the control run. Sensitivity of the simulated track change is tested for various aspects of the mesoscale vortex and tropical cyclone. It is found that track deflections between 67 and 130 km in 18–24 h could be produced under a variety of realistic scenarios.

As the mesoscale vortex is advected around the tropical cyclone by the cyclonic winds, it is also being filamented by the horizontal shear of the tropical cyclone outer winds. Whereas the rate at which the vortex is advected about the tropical cyclone is critical to the amount of curvature of the tropical cyclone track deflection, the timescale of the filamentation of the mesoscale vortex is critical to the longevity of the track deflection, and thus maintenance of the vortex is a crucial factor. For the same tropical cyclone and separation distance, the track deflections are greater for a larger, deeper, and more intense mesoscale vortex. For the same mesoscale vortex, a variety of track deflections is possible, depending on the outer wind structure of the tropical cyclone due to both the advective effect and to the change in the gradient of vorticity. For a large tropical cyclone, positive vorticity extends farther from the core region, and the curvature of the track deflection is greater than for a smaller tropical cyclone where the vorticity becomes anticyclonic at smaller radii. Although a large initial effect on the tropical cyclone path occurs for small separation distances, the mesoscale vortex is rapidly filamented so that effects on the tropical cyclone track are negligible by 12 h. For larger separation distances, the mesoscale vortex does not filament as rapidly, and a smaller but longer lasting track deflection is simulated.

When the control simulation is extended to a β plane, it is found that the primary contribution to the tropical cyclone track change is still due to the interaction with the mesoscale convective vortex. However, a secondary effect due to a nonlinear interaction between the β gyres and the mesoscale convective vortex adds a small component of propagation to the tropical cyclone that becomes significant after about 15 h of simulation.

Full access
Elizabeth A. Ritchie
and
Russell L. Elsberry

Abstract

The physical mechanisms associated with the transformation stage of the extratropical transition of a tropical cyclone are simulated with a mesoscale model using initial environmental conditions that approximate the mean circulations defined by Klein et al. The tropical cyclone structural changes simulated by the U.S. Navy Coupled Ocean–Atmosphere Model Prediction System mesoscale model during the three steps of transformation compare well with available observations. During step 1 of transformation when the tropical cyclone is just beginning to interact with the midlatitude baroclinic zone, the main environmental factor that affects the tropical cyclone structure appears to be the decreased sea surface temperature. The movement of the tropical cyclone over the lower sea surface temperatures results in reduced surface heat and moisture fluxes, which weakens the core convection and the intensity decreases. During step 2 of transformation, the low-level temperature gradient and vertical wind shear associated with the baroclinic zone begin to affect the tropical cyclone. Main structural changes include the development of cloud-free regions on the west side of the tropical cyclone, and an enhanced “delta” rain region to the northwest of the tropical cyclone center. Gradual erosion of the clouds and deep convection in the west through south sectors of the tropical cyclone appear to be from mechanically forced subsidence due to the convergence between the midlatitude flow and the tropical cyclone circulation. Whereas the warm core aloft is advected downstream, the mid- to low-level warm core is enhanced by subsidence into the tropical cyclone center, which implies that the low-level cyclonic circulation may continue to be maintained.

Step 3 of transformation is the logical conclusion of structural changes that were occurring during steps 1 and 2. Even though the tropical cyclone circulation aloft has dissipated, a broad cyclonic circulation is maintained below 500 mb. Although the low-level warm core is reduced from step 2, it is still significantly stronger than at step 1, and a second warm anomaly is simulated in a region of strong subsidence upshear of the tropical cyclone remnants. Whereas some precipitation is associated with the remnants of the northern eyewall and some cloudiness to the north-northeast, the southern semicircle is almost completely clear of clouds and precipitation.

Full access
William M. Frank
and
Elizabeth A. Ritchie

Abstract

A series of numerical simulations of tropical cyclones in idealized large-scale environments is performed to examine the effects of vertical wind shear on the structure and intensity of hurricanes. The simulations are performed using the nonhydrostatic Pennsylvania State University–National Center for Atmospheric Research fifth-generation Mesoscale Model using a 5-km fine mesh and fully explicit representation of moist processes.

When large-scale vertical shears are applied to mature tropical cyclones, the storms quickly develop wavenumber one asymmetries with upward motion and rainfall concentrated on the left side of the shear vector looking downshear, in agreement with earlier studies. The asymmetries develop due to the storm's response to imbalances caused by the shear. The storms in shear weaken with time and eventually reach an approximate steady-state intensity that is well below their theoretical maximum potential intensity. As expected, the magnitude of the weakening increases with increasing shear. All of the storms experience time lags between the imposition of the large-scale shear and the resulting rise in the minimum central pressure. While the lag is at most a few hours when the storm is placed in very strong (15 m s−1) shear, storms in weaker shears experience much longer lag times, with the 5 m s−1 shear case showing no signs of weakening until more than 36 h after the shear is applied. These lags suggest that the storm intensity is to some degree predictable from observations of large-scale shear changes. In all cases both the development of the asymmetries in core structure and the subsequent weakening of the storm occur before any resolvable tilt of the storm's vertical axis occurs.

It is hypothesized that the weakening of the storm occurs via the following sequence of events: First, the shear causes the structure of the eyewall region to become highly asymmetric throughout the depth of the storm. Second, the asymmetries in the upper troposphere, where the storm circulation is weaker, become sufficiently strong that air with high values of potential vorticity and equivalent potential temperature are mixed outward rather than into the eye. This allows the shear to ventilate the eye resulting in a loss of the warm core at upper levels, which causes the central pressure to rise, weakening the entire storm. The maximum potential vorticity becomes concentrated in saturated portions of the eyewall cloud aloft rather than in the eye. Third, the asymmetric features at upper levels are advected by the shear, causing the upper portions of the vortex to tilt approximately downshear. The storm weakens from the top down, reaching an approximate steady-state intensity when the ventilated layer can descend no farther due to the increasing strength and stability of the vortex at lower levels.

Full access
Kimberly M. Wood
and
Elizabeth A. Ritchie

Abstract

A 42-yr study of eastern North Pacific tropical cyclones (TCs) undergoing extratropical transition (ET) is presented using the Japanese 55-yr Reanalysis dataset. By using cyclone phase space (CPS) to differentiate those TCs that undergo ET from those that do not, it is found that only 9% of eastern North Pacific TCs that developed from 1971 to 2012 complete ET, compared with 40% in the North Atlantic.

Using a combination of CPS, empirical orthogonal function (EOF) analysis, and composite analysis, it is found that the evolution of ET in this basin differs from that observed in the North Atlantic and western North Pacific, possibly as a result of the rapidly decreasing sea surface temperatures north of the main genesis region. The presence of a strong, deep subtropical ridge extending westward from North America into the eastern North Pacific is a major factor inhibiting ET in this basin. Similar to other basins, eastern North Pacific ET generally occurs in conjunction with an approaching midlatitude trough, which helps to weaken the ridge and allow northward passage of the TC. The frequency of ET appears to increase during developing El Niño events but is not significantly affected by the Pacific decadal oscillation.

Full access