Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Elizabeth E. Ebert x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Judith A. Curry and Elizabeth E. Ebert


The relationship between cloud optical properties and the radiative fluxes over the Arctic Ocean is explored by conducting a series of modeling experiments. The annual cycle of arctic cloud optical properties that are required to reproduce both the outgoing radiative fluxes at the top of the atmosphere as determined from satellite observations and the available determinations of surface radiative fluxes are derived. Existing data on cloud fraction and cloud microphysical properties are utilized. Four types of cloud are considered: low stratus clouds, midlevel clouds, cirrus clouds, and wintertime ice crystal precipitation. Internally consistent annual cycles of surface temperature, surface albedo, cloud fraction and cloud optical properties, components of surface and top of atmosphere radiative fluxes, and cloud radiative forcing are presented.

The modeled total cloud optical depth (weighted by cloud fraction) ranges from a low value in winter of 2 to a high summertime value of 8. Infrared emmissivities for liquid water clouds are shown to be substantiafly less than unity during the cold half of the year. Values of modeled surface cloud radiative forcing are positive except for two weeks in midsummer; over the course of the year clouds have a net warning effect on the surface in the Arctic. Total cloud radiative forcing at the top of the atmosphere is determined to be positive only briefly in early autumn. Surface longwave fluxes are shown to be very sensitive to the presence of lower-tropospheric ice crystal precipitation during the cold half of the year.

Full access
Judith A. Curry, Julie L. Schramm, and Elizabeth E. Ebert


The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the areal cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics).

The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution, the Ebert and Curry model, the Maykut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing.

Full access