Search Results
Abstract
High-resolution, nearly Lagrangian observations of velocity and density made in the North Wall of the Gulf Stream reveal banded shear structures characteristic of near-inertial waves (NIWs). Here, the current follows submesoscale dynamics, with Rossby and Richardson numbers near one, and the vertical vorticity is positive. This allows for a unique analysis of the interaction of NIWs with a submesoscale current dominated by cyclonic as opposed to anticyclonic vorticity. Rotary spectra reveal that the vertical shear vector rotates primarily clockwise with depth and with time at frequencies near and above the local Coriolis frequency f. At some depths, more than half of the measured shear variance is explained by clockwise rotary motions with frequencies between f and 1.7f. The dominant superinertial frequencies are consistent with those inferred from a dispersion relation for NIWs in submesoscale currents that depends on the observed aspect ratio of the wave shear as well as the vertical vorticity, baroclinicity, and stratification of the balanced flow. These observations motivate a ray tracing calculation of superinertial wave propagation in the North Wall, where multiple filaments of strong cyclonic vorticity strongly modify wave propagation. The calculation shows that the minimum permissible frequency for inertia–gravity waves is mostly greater than the Coriolis frequency, and superinertial waves can be trapped and amplified at slantwise critical layers between cyclonic vortex filaments, providing a new plausible explanation for why the observed shear variance is dominated by superinertial waves.
Abstract
High-resolution, nearly Lagrangian observations of velocity and density made in the North Wall of the Gulf Stream reveal banded shear structures characteristic of near-inertial waves (NIWs). Here, the current follows submesoscale dynamics, with Rossby and Richardson numbers near one, and the vertical vorticity is positive. This allows for a unique analysis of the interaction of NIWs with a submesoscale current dominated by cyclonic as opposed to anticyclonic vorticity. Rotary spectra reveal that the vertical shear vector rotates primarily clockwise with depth and with time at frequencies near and above the local Coriolis frequency f. At some depths, more than half of the measured shear variance is explained by clockwise rotary motions with frequencies between f and 1.7f. The dominant superinertial frequencies are consistent with those inferred from a dispersion relation for NIWs in submesoscale currents that depends on the observed aspect ratio of the wave shear as well as the vertical vorticity, baroclinicity, and stratification of the balanced flow. These observations motivate a ray tracing calculation of superinertial wave propagation in the North Wall, where multiple filaments of strong cyclonic vorticity strongly modify wave propagation. The calculation shows that the minimum permissible frequency for inertia–gravity waves is mostly greater than the Coriolis frequency, and superinertial waves can be trapped and amplified at slantwise critical layers between cyclonic vortex filaments, providing a new plausible explanation for why the observed shear variance is dominated by superinertial waves.
Abstract
The passage of a winter storm over the Gulf Stream observed with a Lagrangian float and hydrographic and velocity surveys provided a unique opportunity to study how the interaction of inertial oscillations, the front, and symmetric instability (SI) shapes the stratification, shear, and turbulence in the upper ocean under unsteady forcing. During the storm, the rapid rise and rotation of the winds excited inertial motions. Acting on the front, these sheared motions modulate the stratification in the surface boundary layer. At the same time, cooling and downfront winds generated a symmetrically unstable flow. The observed turbulent kinetic energy dissipation exceeded what could be attributed to atmospheric forcing, implying SI drew energy from the front. The peak excess dissipation, which occurred just prior to a minimum in stratification, surpassed that predicted for steady SI turbulence, suggesting the importance of unsteady dynamics. The measurements are interpreted using a large-eddy simulation (LES) and a stability analysis configured with parameters taken from the observations. The stability analysis illustrates how SI more efficiently extracts energy from a front via shear production during periods when inertial motions reduce stratification. Diagnostics of the energetics of SI from the LES highlight the temporal variability in shear production but also demonstrate that the time-averaged energy balance is consistent with a theoretical scaling that has previously been tested only for steady forcing. As the storm passed and the winds and cooling subsided, the boundary layer restratified and the thermal wind balance was reestablished in a manner reminiscent of geostrophic adjustment.
Abstract
The passage of a winter storm over the Gulf Stream observed with a Lagrangian float and hydrographic and velocity surveys provided a unique opportunity to study how the interaction of inertial oscillations, the front, and symmetric instability (SI) shapes the stratification, shear, and turbulence in the upper ocean under unsteady forcing. During the storm, the rapid rise and rotation of the winds excited inertial motions. Acting on the front, these sheared motions modulate the stratification in the surface boundary layer. At the same time, cooling and downfront winds generated a symmetrically unstable flow. The observed turbulent kinetic energy dissipation exceeded what could be attributed to atmospheric forcing, implying SI drew energy from the front. The peak excess dissipation, which occurred just prior to a minimum in stratification, surpassed that predicted for steady SI turbulence, suggesting the importance of unsteady dynamics. The measurements are interpreted using a large-eddy simulation (LES) and a stability analysis configured with parameters taken from the observations. The stability analysis illustrates how SI more efficiently extracts energy from a front via shear production during periods when inertial motions reduce stratification. Diagnostics of the energetics of SI from the LES highlight the temporal variability in shear production but also demonstrate that the time-averaged energy balance is consistent with a theoretical scaling that has previously been tested only for steady forcing. As the storm passed and the winds and cooling subsided, the boundary layer restratified and the thermal wind balance was reestablished in a manner reminiscent of geostrophic adjustment.