Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Eric J. Nelkin x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Robert F. Adler
,
George J. Huffman
,
David T. Bolvin
,
Scott Curtis
, and
Eric J. Nelkin

Abstract

A technique is described to use Tropical Rainfall Measuring Mission (TRMM) combined radar–radiometer information to adjust geosynchronous infrared satellite data [the TRMM Adjusted Geostationary Operational Environmental Satellite Precipitation Index (AGPI)]. The AGPI is then merged with rain gauge information (mostly over land) to provide finescale (1° latitude × 1° longitude) pentad and monthly analyses, respectively. The TRMM merged estimates are 10% higher than those from the Global Precipitation Climatology Project (GPCP) when integrated over the tropical oceans (37°N–37°S) for 1998, with 20% differences noted in the most heavily raining areas. In the dry subtropics the TRMM values are smaller than the GPCP estimates. The TRMM merged product tropical-mean estimates for 1998 are 3.3 mm day−1 over ocean and 3.1 mm day−1 over land and ocean combined. Regional differences are noted between the western and eastern Pacific Ocean maxima when TRMM and GPCP are compared. In the eastern Pacific rain maximum the TRMM and GPCP mean values are nearly equal, which is very different from the other tropical rainy areas where TRMM merged product estimates are higher. This regional difference may indicate that TRMM is better at taking into account the vertical structure of the rain systems and the difference in structure between the western and eastern (shallower) Pacific convection.

Comparisons of these TRMM merged analysis estimates with surface datasets shows varied results; the bias is near zero when compared with western Pacific Ocean atoll rain gauge data, but is significantly positive as compared with Kwajalein radar estimates (adjusted by rain gauges). Over land the TRMM estimates also show a significant positive bias. The inclusion of gauge information in the final merged product significantly reduces the bias over land, as expected.

The monthly precipitation patterns produced by the TRMM merged data process clearly show the evolution of the El Niño–Southern Oscillation (ENSO) tropical precipitation pattern from early 1998 (El Niño) to early 1999 (La Niña) and beyond. The El Niño-minus-La Niña difference map shows the expected eastern Pacific maximum, the “Maritime Continent” minima, and other tropical and midlatitude features, very similar to those detected by the GPCP analyses. However, summing the El Niño-minus-La Niña differences over the global tropical oceans yields divergent answers for interannual changes from TRMM, GPCP, and other estimates. This emphasizes the need for additional validation and analysis before it is feasible to understand the relations between global precipitation anomalies and Pacific Ocean ENSO temperature changes.

Full access
David T. Bolvin
,
Robert F. Adler
,
George J. Huffman
,
Eric J. Nelkin
, and
Jani P. Poutiainen

Abstract

Monthly and daily products of the Global Precipitation Climatology Project (GPCP) are evaluated through a comparison with Finnish Meteorological Institute (FMI) gauge observations for the period January 1995–December 2007 to assess the quality of the GPCP estimates at high latitudes. At the monthly scale both the final GPCP combination satellite–gauge (SG) product is evaluated, along with the satellite-only multisatellite (MS) product. The GPCP daily product is scaled to sum to the monthly product, so it implicitly contains monthly-scale gauge influence, although it contains no daily gauge information. As expected, the monthly SG product agrees well with the FMI observations because of the inclusion of limited gauge information. Over the entire analysis period the SG estimates are biased low by 6% when the same wind-loss adjustment is applied to the FMI gauges as is used in the SG analysis. The interannual anomaly correlation is about 0.9. The satellite-only MS product has a lesser, but still reasonably good, interannual correlation (∼0.6) while retaining a similar bias due to the use of a climatological bias adjustment. These results indicate the value of using even a few gauges in the analysis and provide an estimate of the correlation error to be expected in the SG analysis over ocean and remote land areas where gauges are absent. The daily GPCP precipitation estimates compare reasonably well at the 1° latitude × 2° longitude scale with the FMI gauge observations in the summer with a correlation of 0.55, but less so in the winter with a correlation of 0.45. Correlations increase somewhat when larger areas and multiday periods are analyzed. The day-to-day occurrence of precipitation is captured fairly well by the GPCP estimates, but the corresponding precipitation event amounts tend to show wide variability. The results of this study indicate that the GPCP monthly and daily fields are useful for meteorological and hydrological studies but that there is significant room for improvement of satellite retrievals and analysis techniques in this region. It is hoped that the research here provides a framework for future high-latitude assessment efforts such as those that will be necessary for the upcoming satellite-based Global Precipitation Measurement (GPM) mission.

Full access