Search Results
You are looking at 1 - 10 of 10 items for :
- Author or Editor: Eric J. Steig x
- Article x
- Refine by Access: All Content x
Abstract
The oxygen isotope time series from ice cores in central Greenland [the Greenland Ice Sheet Project 2 (GISP2) and the Greenland Ice Core Project (GRIP)] and West Antarctica (Byrd) provide a basis for evaluating the behavior of the climate system on millennial time scales. These time series have been invoked as evidence for mechanisms such as an interhemispheric climate seesaw or a stochastic resonance process. Statistical analyses are used to evaluate the extent to which these mechanisms characterize the observed time series. Simple models in which the Antarctic record reflects the Greenland record or its integral are statistically superior to a model in which the two time series are unrelated. However, these statistics depend primarily on the large events in the earlier parts of the record (between 80 and 50 kyr BP). For the shorter, millennial-scale (Dansgaard–Oeschger) events between 50 and 20 kyr BP, a first-order autoregressive [AR(1)] stochastic climate model with a physical time scale of τ = 600 ± 300 yr is a self-consistent explanation for the Antarctic record. For Greenland, AR(1) with τ = 400 ± 200 yr, plus a simple threshold rule, provides a statistically comparable characterization to stochastic resonance (though it cannot account for the strong 1500-yr spectral peak). The similarity of the physical time scales underlying the millennial-scale variability provides sufficient explanation for the similar appearance of the Greenland and Antarctic records during the 50–20-kyr BP interval. However, it cannot be ruled out that improved cross dating for these records may strengthen the case for an interhemispheric linkage on these shorter time scales. Additionally, the characteristic time scales for the records are significantly shorter during the most recent 10 kyr. Overall, these results suggest that millennial-scale variability is determined largely by regional processes that change significantly between glacial and interglacial climate regimes, with little influence between the Southern and Northern Hemispheres except during those largest events that involve major reorganizations of the ocean thermohaline circulation.
Abstract
The oxygen isotope time series from ice cores in central Greenland [the Greenland Ice Sheet Project 2 (GISP2) and the Greenland Ice Core Project (GRIP)] and West Antarctica (Byrd) provide a basis for evaluating the behavior of the climate system on millennial time scales. These time series have been invoked as evidence for mechanisms such as an interhemispheric climate seesaw or a stochastic resonance process. Statistical analyses are used to evaluate the extent to which these mechanisms characterize the observed time series. Simple models in which the Antarctic record reflects the Greenland record or its integral are statistically superior to a model in which the two time series are unrelated. However, these statistics depend primarily on the large events in the earlier parts of the record (between 80 and 50 kyr BP). For the shorter, millennial-scale (Dansgaard–Oeschger) events between 50 and 20 kyr BP, a first-order autoregressive [AR(1)] stochastic climate model with a physical time scale of τ = 600 ± 300 yr is a self-consistent explanation for the Antarctic record. For Greenland, AR(1) with τ = 400 ± 200 yr, plus a simple threshold rule, provides a statistically comparable characterization to stochastic resonance (though it cannot account for the strong 1500-yr spectral peak). The similarity of the physical time scales underlying the millennial-scale variability provides sufficient explanation for the similar appearance of the Greenland and Antarctic records during the 50–20-kyr BP interval. However, it cannot be ruled out that improved cross dating for these records may strengthen the case for an interhemispheric linkage on these shorter time scales. Additionally, the characteristic time scales for the records are significantly shorter during the most recent 10 kyr. Overall, these results suggest that millennial-scale variability is determined largely by regional processes that change significantly between glacial and interglacial climate regimes, with little influence between the Southern and Northern Hemispheres except during those largest events that involve major reorganizations of the ocean thermohaline circulation.
Abstract
Significant summer warming over the eastern Antarctic Peninsula in the last 50 years has been attributed to a strengthening of the circumpolar westerlies, widely believed to be anthropogenic in origin. On the western side of the peninsula, significant warming has occurred mainly in austral winter and has been attributed to the reduction of sea ice. The authors show that austral fall is the only season in which spatially extensive warming has occurred on the Antarctic Peninsula. This is accompanied by a significant reduction of sea ice cover off the west coast. In winter and spring, warming is mainly observed on the west side of the peninsula. The most important large-scale forcing of the significant widespread warming trend in fall is the extratropical Rossby wave train associated with tropical Pacific sea surface temperature anomalies. Winter and spring warming on the western peninsula reflects the persistence of sea ice anomalies arising from the tropically forced atmospheric circulation changes in austral fall.
Abstract
Significant summer warming over the eastern Antarctic Peninsula in the last 50 years has been attributed to a strengthening of the circumpolar westerlies, widely believed to be anthropogenic in origin. On the western side of the peninsula, significant warming has occurred mainly in austral winter and has been attributed to the reduction of sea ice. The authors show that austral fall is the only season in which spatially extensive warming has occurred on the Antarctic Peninsula. This is accompanied by a significant reduction of sea ice cover off the west coast. In winter and spring, warming is mainly observed on the west side of the peninsula. The most important large-scale forcing of the significant widespread warming trend in fall is the extratropical Rossby wave train associated with tropical Pacific sea surface temperature anomalies. Winter and spring warming on the western peninsula reflects the persistence of sea ice anomalies arising from the tropically forced atmospheric circulation changes in austral fall.
Abstract
Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T IR) and passive microwave brightness temperatures (T B ). Although T IR data are limited to clear-sky conditions and T B data are a product of the temperature and emissivity of the upper ∼1 m of snow, the two datasets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. The T B variations are damped compared to T IR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific–South American (PSA) patterns in 500-hPa height on month-to-month time scales. ENSO variability projects onto this mode on interannual time scales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.
Abstract
Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T IR) and passive microwave brightness temperatures (T B ). Although T IR data are limited to clear-sky conditions and T B data are a product of the temperature and emissivity of the upper ∼1 m of snow, the two datasets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. The T B variations are damped compared to T IR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific–South American (PSA) patterns in 500-hPa height on month-to-month time scales. ENSO variability projects onto this mode on interannual time scales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.
Abstract
A hierarchy of general circulation models (GCMs) is used to investigate the linearity of the response of the climate system to changes in Antarctic topography. Experiments were conducted with a GCM with either a slab ocean or fixed SSTs and sea ice, in which the West Antarctic ice sheet (WAIS) and coastal Antarctic topography were either lowered or raised in an idealized way. Additional experiments were conducted with a fully coupled GCM with topographic perturbations based on an ice-sheet model in which the WAIS collapses. The response over the continent is the same in all model configurations and is mostly linear. In contrast, the response has substantial nonlinear elements over the Southern Ocean that depend on the model configuration and are due to feedbacks with sea ice, ocean, and clouds. The atmosphere warms near the surface over much of the Southern Ocean and cools in the stratosphere over Antarctica, whether topography is raised or lowered. When topography is lowered, the Southern Ocean surface warming is due to strengthened southward atmospheric heat transport and associated enhanced storminess over the WAIS and the high latitudes of the Southern Ocean. When topography is raised, Southern Ocean warming is more limited and is associated with circulation anomalies. The response in the fully coupled experiments is generally consistent with the more idealized experiments, but the full-depth ocean warms throughout the water column whether topography is raised or lowered. These results indicate that ice sheet–climate system feedbacks differ depending on whether the Antarctic ice sheet is gaining or losing mass.
Significance Statement
Throughout Earth’s history, the Antarctic ice sheet was at times taller or shorter than it is today. The purpose of this study is to investigate how the atmosphere, sea ice, and ocean around Antarctica respond to changes in ice sheet height. We find that the response to lowering the ice sheet is not the opposite of the response to raising it, and that in either case the ocean surface near the continent warms. When the ice sheet is raised, the ocean warming is related to circulation changes; when the ice sheet is lowered, the ocean warming is from an increase in southward atmospheric heat transport. These results are important for understanding how the ice sheet height and local climate evolve together through time.
Abstract
A hierarchy of general circulation models (GCMs) is used to investigate the linearity of the response of the climate system to changes in Antarctic topography. Experiments were conducted with a GCM with either a slab ocean or fixed SSTs and sea ice, in which the West Antarctic ice sheet (WAIS) and coastal Antarctic topography were either lowered or raised in an idealized way. Additional experiments were conducted with a fully coupled GCM with topographic perturbations based on an ice-sheet model in which the WAIS collapses. The response over the continent is the same in all model configurations and is mostly linear. In contrast, the response has substantial nonlinear elements over the Southern Ocean that depend on the model configuration and are due to feedbacks with sea ice, ocean, and clouds. The atmosphere warms near the surface over much of the Southern Ocean and cools in the stratosphere over Antarctica, whether topography is raised or lowered. When topography is lowered, the Southern Ocean surface warming is due to strengthened southward atmospheric heat transport and associated enhanced storminess over the WAIS and the high latitudes of the Southern Ocean. When topography is raised, Southern Ocean warming is more limited and is associated with circulation anomalies. The response in the fully coupled experiments is generally consistent with the more idealized experiments, but the full-depth ocean warms throughout the water column whether topography is raised or lowered. These results indicate that ice sheet–climate system feedbacks differ depending on whether the Antarctic ice sheet is gaining or losing mass.
Significance Statement
Throughout Earth’s history, the Antarctic ice sheet was at times taller or shorter than it is today. The purpose of this study is to investigate how the atmosphere, sea ice, and ocean around Antarctica respond to changes in ice sheet height. We find that the response to lowering the ice sheet is not the opposite of the response to raising it, and that in either case the ocean surface near the continent warms. When the ice sheet is raised, the ocean warming is related to circulation changes; when the ice sheet is lowered, the ocean warming is from an increase in southward atmospheric heat transport. These results are important for understanding how the ice sheet height and local climate evolve together through time.
Abstract
The efficacy of a novel ensemble data assimilation (DA) technique is examined in the climate field reconstruction (CFR) of surface temperature. A minimalistic, computationally inexpensive DA technique is employed that requires only a static ensemble of climatologically plausible states. Pseudoproxy experiments are performed with both general circulation model (GCM) and Twentieth Century Reanalysis (20CR) data by reconstructing surface temperature fields from a sparse network of noisy pseudoproxies. The DA approach is compared to a conventional CFR approach based on principal component analysis (PCA) for experiments on global domains. DA outperforms PCA in reconstructing global-mean temperature in all experiments and is more consistent across experiments, with a range of time series correlations of 0.69–0.94 compared to 0.19–0.87 for the PCA method. DA improvements are even more evident in spatial reconstruction skill, especially in sparsely sampled pseudoproxy regions and for 20CR experiments. It is hypothesized that DA improves spatial reconstructions because it relies on coherent, spatially local temperature patterns, which remain robust even when glacial states are used to reconstruct nonglacial states and vice versa. These local relationships, as utilized by DA, appear to be more robust than the orthogonal patterns of variability utilized by PCA. Comparing results for GCM and 20CR data indicates that pseudoproxy experiments that rely solely on GCM data may give a false impression of reconstruction skill.
Abstract
The efficacy of a novel ensemble data assimilation (DA) technique is examined in the climate field reconstruction (CFR) of surface temperature. A minimalistic, computationally inexpensive DA technique is employed that requires only a static ensemble of climatologically plausible states. Pseudoproxy experiments are performed with both general circulation model (GCM) and Twentieth Century Reanalysis (20CR) data by reconstructing surface temperature fields from a sparse network of noisy pseudoproxies. The DA approach is compared to a conventional CFR approach based on principal component analysis (PCA) for experiments on global domains. DA outperforms PCA in reconstructing global-mean temperature in all experiments and is more consistent across experiments, with a range of time series correlations of 0.69–0.94 compared to 0.19–0.87 for the PCA method. DA improvements are even more evident in spatial reconstruction skill, especially in sparsely sampled pseudoproxy regions and for 20CR experiments. It is hypothesized that DA improves spatial reconstructions because it relies on coherent, spatially local temperature patterns, which remain robust even when glacial states are used to reconstruct nonglacial states and vice versa. These local relationships, as utilized by DA, appear to be more robust than the orthogonal patterns of variability utilized by PCA. Comparing results for GCM and 20CR data indicates that pseudoproxy experiments that rely solely on GCM data may give a false impression of reconstruction skill.
Abstract
Station siting for environmental observing networks is usually made subjectively, which suggests that the monitoring goals for the network may not be met optimally or cost effectively. In Antarctica, where harsh weather conditions make it difficult to install and maintain stations, practical considerations have largely guided the development of the staffed and automated weather station network. The current network coverage in Antarctica is evaluated as a precursor to optimal network design. The Antarctic Mesoscale Prediction System (AMPS) 0000 UTC analysis is used for 4 years (2008–12) with 15-km horizontal grid spacing, and results show that AMPS reproduces the daily correlations in surface temperature and pressure observed between weather stations across the continent. Temperature correlation length scales are greater in East Antarctica than in West Antarctica (including the Antarctic Peninsula), implying that more stations per unit area are needed to sample weather in West Antarctica compared to East Antarctica. There is variability in the temperature correlation length scales within these regions, emphasizing the need for objective studies such as this one for determining the impact of current and new stations. Further analysis shows that large regions are not well sampled by the current network, particularly on daily time scales. Observations are particularly limited in West Antarctica. Combined with the shorter temperature correlation length scales, this implies that West Antarctica is a compelling location for implementing an objective, optimal network design approach.
Abstract
Station siting for environmental observing networks is usually made subjectively, which suggests that the monitoring goals for the network may not be met optimally or cost effectively. In Antarctica, where harsh weather conditions make it difficult to install and maintain stations, practical considerations have largely guided the development of the staffed and automated weather station network. The current network coverage in Antarctica is evaluated as a precursor to optimal network design. The Antarctic Mesoscale Prediction System (AMPS) 0000 UTC analysis is used for 4 years (2008–12) with 15-km horizontal grid spacing, and results show that AMPS reproduces the daily correlations in surface temperature and pressure observed between weather stations across the continent. Temperature correlation length scales are greater in East Antarctica than in West Antarctica (including the Antarctic Peninsula), implying that more stations per unit area are needed to sample weather in West Antarctica compared to East Antarctica. There is variability in the temperature correlation length scales within these regions, emphasizing the need for objective studies such as this one for determining the impact of current and new stations. Further analysis shows that large regions are not well sampled by the current network, particularly on daily time scales. Observations are particularly limited in West Antarctica. Combined with the shorter temperature correlation length scales, this implies that West Antarctica is a compelling location for implementing an objective, optimal network design approach.
Abstract
The West Antarctic Ice Sheet (WAIS) may have collapsed during the last interglacial period, between 132 000 and 116 000 years ago. The changes in topography resulting from WAIS collapse would be accompanied by significant changes in Antarctic surface climate, atmospheric circulation, and ocean conditions. Evidence of these changes may be recorded in water-isotope ratios in precipitation archived in the ice. We conduct high-resolution simulations with an isotope-enabled version of the Weather Research and Forecasting Model over Antarctica, with boundary conditions provided by climate model simulations with both present-day and lowered WAIS topography. The results show that while there is significant spatial variability, WAIS collapse would cause detectable isotopic changes at several locations where ice-core records have been obtained or could be obtained in the future. The most robust signals include elevated δ 18O at SkyTrain Ice Rise in West Antarctica and elevated deuterium excess and δ 18O at Hercules Dome in East Antarctica. A combination of records from multiple sites would provide constraints on the timing, rate, and magnitude of past WAIS collapse.
Abstract
The West Antarctic Ice Sheet (WAIS) may have collapsed during the last interglacial period, between 132 000 and 116 000 years ago. The changes in topography resulting from WAIS collapse would be accompanied by significant changes in Antarctic surface climate, atmospheric circulation, and ocean conditions. Evidence of these changes may be recorded in water-isotope ratios in precipitation archived in the ice. We conduct high-resolution simulations with an isotope-enabled version of the Weather Research and Forecasting Model over Antarctica, with boundary conditions provided by climate model simulations with both present-day and lowered WAIS topography. The results show that while there is significant spatial variability, WAIS collapse would cause detectable isotopic changes at several locations where ice-core records have been obtained or could be obtained in the future. The most robust signals include elevated δ 18O at SkyTrain Ice Rise in West Antarctica and elevated deuterium excess and δ 18O at Hercules Dome in East Antarctica. A combination of records from multiple sites would provide constraints on the timing, rate, and magnitude of past WAIS collapse.
Abstract
Perturbations in the southern annular mode (SAM) are shown to be significantly correlated with SST anomalies in the central tropical Pacific during austral winter and SST anomalies in the eastern tropical Pacific during austral summer. The SAM signature in the Pacific sector resembles a tropically forced Rossby wave train, the so-called Pacific–South American pattern, while the signature in the Indian Ocean sector is a zonally elongated meridional dipole. Thus, the SAM contains strong zonally asymmetric variability and tends to behave differently in the Eastern and Western Hemispheres, with internal dynamics prevailing in the Indian Ocean sector and the forced response to tropical SST anomalies exerting a strong influence in the Pacific sector. The tropically forced component of the SAM in the Pacific sector is related to a geographically fixed active Rossby wave source to the east of Australia within the core of the subtropical jet. In addition to the well-documented positive trend in summer, the SAM also exhibits a negative wintertime trend since 1979, characterized by prominent geopotential height increases over the high latitudes. In both seasons, SAM trends are closely linked to long-term trends in tropical Pacific SST that are independent of the canonical eastern Pacific ENSO variability. Although the SAM is an intrinsic pattern of high-latitude variability, the SAM index reflects the superposition of both high-latitude and tropically forced variability.
Abstract
Perturbations in the southern annular mode (SAM) are shown to be significantly correlated with SST anomalies in the central tropical Pacific during austral winter and SST anomalies in the eastern tropical Pacific during austral summer. The SAM signature in the Pacific sector resembles a tropically forced Rossby wave train, the so-called Pacific–South American pattern, while the signature in the Indian Ocean sector is a zonally elongated meridional dipole. Thus, the SAM contains strong zonally asymmetric variability and tends to behave differently in the Eastern and Western Hemispheres, with internal dynamics prevailing in the Indian Ocean sector and the forced response to tropical SST anomalies exerting a strong influence in the Pacific sector. The tropically forced component of the SAM in the Pacific sector is related to a geographically fixed active Rossby wave source to the east of Australia within the core of the subtropical jet. In addition to the well-documented positive trend in summer, the SAM also exhibits a negative wintertime trend since 1979, characterized by prominent geopotential height increases over the high latitudes. In both seasons, SAM trends are closely linked to long-term trends in tropical Pacific SST that are independent of the canonical eastern Pacific ENSO variability. Although the SAM is an intrinsic pattern of high-latitude variability, the SAM index reflects the superposition of both high-latitude and tropically forced variability.
Abstract
The climate of West Antarctica is strongly influenced by remote forcing from the tropical Pacific. For example, recent surface warming over West Antarctica reflects atmospheric circulation changes over the Amundsen Sea, driven by an atmospheric Rossby wave response to tropical sea surface temperature (SST) anomalies. Here, it is demonstrated that tropical Pacific SST anomalies also influence the source and transport of marine-derived aerosols to the West Antarctic Ice Sheet. Using records from four firn cores collected along the Amundsen coast of West Antarctica, the relationship between sea ice–modulated chemical species and large-scale atmospheric variability in the tropical Pacific from 1979 to 2010 is investigated. Significant correlations are found between marine biogenic aerosols and sea salts, and SST and sea level pressure in the tropical Pacific. In particular, La Niña–like conditions generate an atmospheric Rossby wave response that influences atmospheric circulation over Pine Island Bay. Seasonal regression of atmospheric fields on methanesulfonic acid (MSA) reveals a reduction in onshore wind velocities in summer at Pine Island Bay, consistent with enhanced katabatic flow, polynya opening, and coastal dimethyl sulfide production. Seasonal regression of atmospheric fields on chloride (Cl−) reveals an intensification in onshore wind velocities in winter, consistent with sea salt transport from offshore source regions. Both the source and transport of marine aerosols to West Antarctica are found to be modulated by similar atmospheric dynamics in response to remote forcing. Finally, the regional ice-core array suggests that there is both a temporally and a spatially varying response to remote tropical forcing.
Abstract
The climate of West Antarctica is strongly influenced by remote forcing from the tropical Pacific. For example, recent surface warming over West Antarctica reflects atmospheric circulation changes over the Amundsen Sea, driven by an atmospheric Rossby wave response to tropical sea surface temperature (SST) anomalies. Here, it is demonstrated that tropical Pacific SST anomalies also influence the source and transport of marine-derived aerosols to the West Antarctic Ice Sheet. Using records from four firn cores collected along the Amundsen coast of West Antarctica, the relationship between sea ice–modulated chemical species and large-scale atmospheric variability in the tropical Pacific from 1979 to 2010 is investigated. Significant correlations are found between marine biogenic aerosols and sea salts, and SST and sea level pressure in the tropical Pacific. In particular, La Niña–like conditions generate an atmospheric Rossby wave response that influences atmospheric circulation over Pine Island Bay. Seasonal regression of atmospheric fields on methanesulfonic acid (MSA) reveals a reduction in onshore wind velocities in summer at Pine Island Bay, consistent with enhanced katabatic flow, polynya opening, and coastal dimethyl sulfide production. Seasonal regression of atmospheric fields on chloride (Cl−) reveals an intensification in onshore wind velocities in winter, consistent with sea salt transport from offshore source regions. Both the source and transport of marine aerosols to West Antarctica are found to be modulated by similar atmospheric dynamics in response to remote forcing. Finally, the regional ice-core array suggests that there is both a temporally and a spatially varying response to remote tropical forcing.
Abstract
In the past 40 years, the global annual mean surface temperature has experienced a nonuniform warming, differing from the spatially uniform warming simulated by the forced responses of large multimodel ensembles to anthropogenic forcing. Rather, it exhibits significant asymmetry between the Arctic and Antarctic, with intermittent and spatially varying warming trends along the Northern Hemisphere (NH) midlatitudes and a slight cooling in the tropical eastern Pacific. In particular, this “wavy” pattern of temperature changes over the NH midlatitudes features strong cooling over Eurasia in boreal winter. Here, we show that these nonuniform features of surface temperature changes are likely tied together by tropical eastern Pacific sea surface temperatures (SSTs), via a global atmospheric teleconnection. Using six reanalyses, we find that this teleconnection can be consistently obtained as a leading circulation mode in the past century. This tropically driven teleconnection is associated with a Pacific SST pattern resembling the interdecadal Pacific oscillation (IPO), and hereafter referred to as the IPO-related bipolar teleconnection (IPO-BT). Further, two paleo-reanalysis reconstruction datasets show that the IPO-BT is a robust recurrent mode over the past 400 and 2000 years. The IPO-BT mode may thus serve as an important internal mode that regulates high-latitude climate variability on multidecadal time scales, favoring a warming (cooling) episode in the Arctic accompanied by cooling (warming) over Eurasia and the Southern Ocean (SO). Thus, the spatial nonuniformity of recent surface temperature trends may be partially explained by the enhanced appearance of the IPO-BT mode by a transition of the IPO toward a cooling phase in the eastern Pacific in the past decades.
Abstract
In the past 40 years, the global annual mean surface temperature has experienced a nonuniform warming, differing from the spatially uniform warming simulated by the forced responses of large multimodel ensembles to anthropogenic forcing. Rather, it exhibits significant asymmetry between the Arctic and Antarctic, with intermittent and spatially varying warming trends along the Northern Hemisphere (NH) midlatitudes and a slight cooling in the tropical eastern Pacific. In particular, this “wavy” pattern of temperature changes over the NH midlatitudes features strong cooling over Eurasia in boreal winter. Here, we show that these nonuniform features of surface temperature changes are likely tied together by tropical eastern Pacific sea surface temperatures (SSTs), via a global atmospheric teleconnection. Using six reanalyses, we find that this teleconnection can be consistently obtained as a leading circulation mode in the past century. This tropically driven teleconnection is associated with a Pacific SST pattern resembling the interdecadal Pacific oscillation (IPO), and hereafter referred to as the IPO-related bipolar teleconnection (IPO-BT). Further, two paleo-reanalysis reconstruction datasets show that the IPO-BT is a robust recurrent mode over the past 400 and 2000 years. The IPO-BT mode may thus serve as an important internal mode that regulates high-latitude climate variability on multidecadal time scales, favoring a warming (cooling) episode in the Arctic accompanied by cooling (warming) over Eurasia and the Southern Ocean (SO). Thus, the spatial nonuniformity of recent surface temperature trends may be partially explained by the enhanced appearance of the IPO-BT mode by a transition of the IPO toward a cooling phase in the eastern Pacific in the past decades.