Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Eric Skyllingstad x
  • DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation x
  • Refine by Access: All Content x
Clear All Modify Search
Eric D. Skyllingstad
and
Simon P. de Szoeke

Abstract

Cloud-resolving large-eddy simulations (LES) on a 500 km × 500 km periodic domain coupled to a thermodynamic ocean mixed layer are used to study the effect of large-scale moisture convergence M on the convective population and heat and moisture budgets of the tropical atmosphere, for several simulations with M representative of the suppressed, transitional, and active phases of the Madden–Julian oscillation (MJO). For a limited-area model without an imposed vertical velocity, M controls the overall vertical temperature structure. Moisture convergence equivalent to ~200 W m−2 (9 mm day−1) maintains the observed temperature profile above 5 km. Increased convective heating for simulations with higher M is partially offset by greater infrared cooling, suggesting a potential negative feedback that helps maintain the weak temperature gradient conditions observed in the tropics. Surface evaporation decreases as large-scale moisture convergence increases, and is only a minor component of the overall water budget for convective conditions representing the active phase of the MJO. Cold pools generated by evaporation of precipitation under convective conditions are gusty, with roughly double the wind stress of their surroundings. Consistent with observations, enhanced surface evaporation due to cold pool gusts is up to 40% of the mean, but has a small effect on the total moisture budget compared to the imposed large-scale moisture convergence.

Full access
Simon P. de Szoeke
,
Eric D. Skyllingstad
,
Paquita Zuidema
, and
Arunchandra S. Chandra

Abstract

Cold pools dominate the surface temperature variability observed over the central Indian Ocean (0°, 80°E) for 2 months of research cruise observations in the Dynamics of the Madden–Julian Oscillation (DYNAMO) experiment in October–December 2011. Cold pool fronts are identified by a rapid drop of temperature. Air in cold pools is slightly drier than the boundary layer (BL). Consistent with previous studies, cold pools attain wet-bulb potential temperatures representative of saturated downdrafts originating from the lower midtroposphere.

Wind and surface fluxes increase, and rain is most likely within the ~20-min cold pool front. Greatest integrated water vapor and liquid follow the front. Temperature and velocity fluctuations shorter than 6 min achieve 90% of the surface latent and sensible heat flux in cold pools. The temperature of the cold pools recovers in about 20 min, chiefly by mixing at the top of the shallow cold wake layer, rather than by surface flux.

Analysis of conserved variables shows mean BL air is composed of 51% air entrained from the BL top (800 m), 22% saturated downdrafts, and 27% air at equilibrium with the ocean surface. The number of cold pools, and their contribution to the BL heat and moisture, nearly doubles in the convectively active phase compared to the suppressed phase of the Madden–Julian oscillation.

Full access