Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Eric Skyllingstad x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Craig M. Smith
and
Eric D. Skyllingstad

Abstract

Simulations are presented focusing on the role of temperature inversions in controlling the formation and strength of downslope wind storms. Three mechanisms are examined depending on the relative height of the inversion with respect to the mountain and the stability of vertically propagating mountain waves. For low-level inversions, flows are generated that closely resemble a reduced gravity shallow water hydraulic response with a large vertical displacement of the inversion on the lee side of the mountain. For higher-level inversion cases, simulated flows more closely followed a stratified hydraulic behavior with the inversion acting as a rigid reflective lid. In the third mechanism, downslope winds were forced by a self-induced critical layer located below the inversion height. The presence of the inversion in this case had little effect on the resulting downslope winds.

Observations made on the Falkland Islands show that downslope windstorms may preferentially occur in early morning even without synoptic-scale changes in atmospheric structure. Most windstorms on the Falkland Islands generally have a short jet length; rare, longer jet length storms typically occur in conjunction with a strong low-level inversion. Idealized numerical experiments tend to produce a similar response depending on the presence of strong low-level inversion and surface cooling. Results suggest that surface heating can have significant control on the flow response by reducing the low-level inversion strength, or by changing the stratification and wind velocity below the inversion, thereby preventing a strong downslope windstorm.

Full access
Craig M. Smith
and
Eric D. Skyllingstad

Abstract

A large eddy simulation (LES) model and the Advanced Regional Prediction System (ARPS) model, which does not resolve turbulent eddies, are used to study the effect of a slope angle decrease on the structure of katabatic slope flows. For a simple, uniform angle slope, simulations from both models produce turbulence kinetic energy and momentum budgets that are in good overall agreement. Simulations of a compound angle slope are compared to a uniform angle slope to demonstrate how a changing slope angle can strongly affect the strength of katabatic flows. Both ARPS and the LES model show that slopes with a steep upper slope followed by a shallower lower slope (concave shape) generate a rapid acceleration on the upper slope followed by a transition to a slower evolving structure characterized by an elevated jet over the lower slope. In contrast, the case with uniform slope (having the same total height change) yields a more uniform flow profile with stronger winds at the slope bottom. Higher average slope in the uniform slope angle case generates greater gravitational potential energy, which is converted to kinetic energy at the bottom of the slope. Analysis of the total energy budget of slope flows indicates a consistent structure where potential energy generated at the top of the slope is transported downslope and converted into kinetic energy near the slope base.

Full access
Eric D. Skyllingstad
and
Simon P. de Szoeke

Abstract

Cloud-resolving large-eddy simulations (LES) on a 500 km × 500 km periodic domain coupled to a thermodynamic ocean mixed layer are used to study the effect of large-scale moisture convergence M on the convective population and heat and moisture budgets of the tropical atmosphere, for several simulations with M representative of the suppressed, transitional, and active phases of the Madden–Julian oscillation (MJO). For a limited-area model without an imposed vertical velocity, M controls the overall vertical temperature structure. Moisture convergence equivalent to ~200 W m−2 (9 mm day−1) maintains the observed temperature profile above 5 km. Increased convective heating for simulations with higher M is partially offset by greater infrared cooling, suggesting a potential negative feedback that helps maintain the weak temperature gradient conditions observed in the tropics. Surface evaporation decreases as large-scale moisture convergence increases, and is only a minor component of the overall water budget for convective conditions representing the active phase of the MJO. Cold pools generated by evaporation of precipitation under convective conditions are gusty, with roughly double the wind stress of their surroundings. Consistent with observations, enhanced surface evaporation due to cold pool gusts is up to 40% of the mean, but has a small effect on the total moisture budget compared to the imposed large-scale moisture convergence.

Full access
Natalie Perlin
,
Eric D. Skyllingstad
, and
Roger M. Samelson

Abstract

The study analyzes atmospheric circulation around an idealized coastal cape during summertime upwelling-favorable wind conditions simulated by a mesoscale coupled ocean–atmosphere model. The domain resembles an eastern ocean boundary with a single cape protruding into the ocean in the center of a coastline. The model predicts the formation of an orographic wind intensification area on the lee side of the cape, extending a few hundred kilometers downstream and seaward. Imposed initial conditions do not contain a low-level temperature inversion, which nevertheless forms on the lee side of the cape during the simulation, and which is accompanied by high Froude numbers diagnosed in that area, suggesting the presence of the supercritical flow. Formation of such an inversion is likely caused by average easterly winds resulting on the lee side that bring warm air masses originating over land, as well as by air warming during adiabatic descent on the lee side of the topographic obstacle. Mountain leeside dynamics modulated by differential diurnal heating is thus suggested to dominate the wind regime in the studied case.

The location of this wind feature and its strong diurnal variations correlate well with the development and evolution of the localized lee side trough over the coastal ocean. The vertical extent of the leeside trough is limited by the subsidence inversion aloft. Diurnal modulations of the ocean sea surface temperatures (SSTs) and surface depth-averaged ocean current on the lee side of the cape are found to strongly correlate with wind stress variations over the same area.

Wind-driven coastal upwelling develops during the simulation and extends offshore about 50 km upwind of the cape. It widens twice as much on the lee side of the cape, where the coldest nearshore SSTs are found. The average wind stress–SST coupling in the 100-km coastal zone is strong for the region upwind of the cape, but is notably weaker for the downwind region, estimated from the 10-day-average fields. The study findings demonstrate that orographic and diurnal modulations of the near-surface atmospheric flow on the lee side of the cape notably affect the air–sea coupling on various temporal scales: weaker wind stress–SST coupling results for the long-term averages, while strong correlations are found on the diurnal scale.

Full access
Eric D. Skyllingstad
,
Philip Barbour
, and
Clive E. Dorman

Abstract

A mesoscale model is used to examine the dynamics of northwest flow over the Santa Barbara Channel region. Three cases are considered, each characterized by typical summertime synoptic conditions, but with differences in pressure gradient strength and marine boundary layer depth (MBL). The first case examines a relatively deep MBL and strong pressure gradient. Case 2 is characterized by a more shallow MBL and weaker pressure gradient, and case 3 represents a transition from a deep MBL to shallow conditions. In all cases, simulated surface winds show reasonable agreement with observations over most of the model domain, with the exception of regions near abrupt terrain changes.

Results from the model indicate that the flow with a deep MBL (∼400 m) and strong pressure gradient (case 1) is supercritical, causing regions of acceleration and expansion in the lee of Point Conception. When the MBL is shallow (∼150 m) (case 2), a transcritical flow scenario exists with subcritical flow upstream from Point Conception and a supercritical flow region over the Santa Barbara Channel and downstream from the Channel Islands. Flow over the channel is strongly affected by diurnal heating in shallow MBL cases, reversing direction in step with a land breeze circulation induced by nighttime cooling. The land breeze forces an internal wave disturbance that propagates westward across the channel, eliminating the supercritical flow region in the lee of Point Conception. Conditions with a deep MBL (∼400 m) produce less variability in the surface winds, except for the region sheltered by the Santa Ynez Mountains. An expansion fan is still evident in this case, but it is produced by the interaction of the flow with higher terrain north and east of the channel. The low hills on Point Conception and the Channel Islands do not have a large blocking effect on the surface flow when the MBL is deep.

Analysis of the momentum budget supports the conclusion that the boundary layer behaves like a transcritical hydraulic flow when the MBL is shallow. Except for the open ocean region, the Coriolis term is minor in comparison with the pressure and advection terms. Diurnal heating effects are evident in the nearshore pressure term, which varies from offshore during the late evening to onshore in the afternoon. These effects are most significant when the MBL is shallow and can augment the hydraulically forced pressure pattern, causing a stronger expansion fan in the late afternoon and a collapse of the expansion fan during the early morning.

Full access
Eric D. Skyllingstad
,
Roger M. Samelson
,
Larry Mahrt
, and
Phil Barbour

Abstract

Numerical simulations of boundary layer evolution in offshore flow of warm air over cool water are conducted and compared with aircraft observations of mean and turbulent fields made at Duck, North Carolina. Two models are used: a two-dimensional, high-resolution mesoscale model with a turbulent kinetic energy closure scheme, and a three-dimensional large-eddy simulation (LES) model that explicitly resolves the largest turbulent scales. Both models simulate general aspects of the decoupling of the weakly convective boundary layer from the surface, as it is advected offshore, and the formation of an internal boundary layer over the cool water. Two sets of experiments are performed, which indicate that complexities in upstream surface conditions play an important role in controlling the observed structure. The first (land–sea) experiments examine the transition from a rough surface having the same temperature as the ambient lower atmosphere, to a smooth ocean surface that is 5°C cooler. In the second (barrier island) experiment, a 4-km strip along the coastline having surface temperature 5°C warmer than the ambient atmosphere is introduced, to represent a narrow, heated barrier island present at the Duck site. In the land–sea case, it is found that the mesoscale model overpredicts turbulent intensity in the upper half of the boundary layer, forcing a deeper boundary layer. Both the mesoscale and LES models produce only a small change in the boundary layer shear and tend to decrease the momentum flux near the surface much more rapidly than the observations. Results from the barrier-island case are more in line with the observed momentum and turbulence structure, but still have a reduced momentum flux in the lower boundary layer in comparison with the observations. The authors find that turbulence in the LES model generated by convection over the heated land surface is stronger than in the mesoscale model, and tends to persist offshore for greater distances because of greater shear in the upper boundary layer winds. Analysis of the mesoscale model results suggests that better estimation of the mixing length could improve the turbulence closure in regions where the surface fluxes are changing rapidly.

Full access
Natalie Perlin
,
Simon P. de Szoeke
,
Dudley B. Chelton
,
Roger M. Samelson
,
Eric D. Skyllingstad
, and
Larry W. O’Neill

Abstract

The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current region of the Southern Ocean using the Weather Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-induced wind response is assessed from eight simulations with different subgrid-scale vertical mixing parameterizations, validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface temperature (SST) observations on 0.25° grids. The satellite data produce a coupling coefficient of s U = 0.42 m s−1 °C−1 for wind to mesoscale SST perturbations. The eight model configurations produce coupling coefficients varying from 0.31 to 0.56 m s−1 °C−1. Most closely matching QuikSCAT are a WRF simulation with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (s U = 0.40 m s−1 °C−1), and a COAMPS simulation with a form of Mellor–Yamada parameterization (s U = 0.38 m s−1 °C−1). Model rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind stress, are similar to that based on s U . In all simulations, the atmospheric potential temperature response to local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast, the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300 m. The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the absolute magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.

Full access