Search Results

You are looking at 1 - 10 of 10 items for :

  • Author or Editor: Eric Uhlhorn x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Lynn K. Shay
and
Eric W. Uhlhorn

Abstract

Recent hurricane activity over the Gulf of Mexico basin has underscored the importance of the Loop Current (LC) and its deep, warm thermal structure on hurricane intensity. During Hurricanes Isidore and Lili in 2002, research flights were conducted from both National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft to observe pre-, in- and poststorm ocean conditions using airborne expendable ocean profilers to measure temperature, salinity, and current structure. Atmospheric thermodynamic and wind profiles and remotely sensed surface winds were concurrently acquired as each storm moved over the LC.

Observed upper-ocean cooling was about 1°C as Isidore moved across the Yucatan Straits at a speed of 4 m s−1. Given prestorm ocean heat content (OHC) levels exceeding 100 kJ cm−2 in the LC (current velocities >1 m s−1), significant cooling and deepening of the ocean mixed layer (OML) did not occur in the straits. Estimated surface enthalpy flux at Isidore’s eyewall was 1.8 kW m−2, where the maximum observed wind was 49 m s−1. Spatially integrating these surface enthalpy fluxes suggested a maximum surface heat loss of 9.5 kJ cm−2 at the eyewall. Over the Yucatan Shelf, observed ocean cooling of 4.5°C was caused by upwelling processes induced by wind stress and an offshore wind-driven transport. During Hurricane Lili, ocean cooling in the LC was ∼1°C but more than 2°C in the Gulf Common Water, where the maximum estimated surface enthalpy flux was 1.4 kW m−2, associated with peak surface winds of 51 m s−1. Because of Lili’s asymmetric structure and rapid translational speed of 7 m s−1, the maximum surface heat loss resulting from the surface enthalpy flux was less than 5 kJ cm−2.

In both hurricanes, the weak ocean thermal response in the LC was primarily due to the lack of energetic near-inertial current shears that develop across the thin OML observed in quiescent regimes. Bulk Richardson numbers remained well above criticality because of the strength of the upper-ocean horizontal pressure gradient that forces northward current and thermal advection of warm water distributed over deep layers. As these oceanic regimes are resistive to shear-induced mixing, hurricanes experience a more sustained surface enthalpy flux compared to storms moving over shallow quiescent mixed layers. Because ocean cooling levels induced by hurricane force winds depend on the underlying oceanic regimes, features must be accurately initialized in coupled forecast models.

Full access
Joseph J. Cione
and
Eric W. Uhlhorn

Abstract

Scientists at NOAA's Hurricane Research Division recently analyzed the inner-core upper-ocean environment for 23 Atlantic, Gulf of Mexico, and Caribbean hurricanes between 1975 and 2002. The interstorm variability of sea surface temperature (SST) change between the hurricane inner-core environment and the ambient ocean environment ahead of the storm is documented using airborne expendable bathythermograph (AXBT) observations and buoy-derived archived SST data. The authors demonstrate that differences between inner-core and ambient SST are much less than poststorm, “cold wake” SST reductions typically observed (i.e., ∼0°–2°C versus 4°–5°C). These findings help define a realistic parameter space for storm-induced SST change within the important high-wind inner-core hurricane environment. Results from a recent observational study yielded estimates of upper-ocean heat content, upper-ocean energy extracted by the storm, and upper-ocean energy utilization for a wide range of tropical systems. Results from this analysis show that, under most circumstances, the energy available to the tropical cyclone is at least an order of magnitude greater than the energy extracted by the storm. This study also highlights the significant impact that changes in inner-core SST have on the magnitude of air–sea fluxes under high-wind conditions. Results from this study illustrate that relatively modest changes in inner-core SST (order 1°C) can effectively alter maximum total enthalpy (sensible plus latent heat) flux by 40% or more.

The magnitude of SST change (ambient minus inner core) was statistically linked to subsequent changes in storm intensity for the 23 hurricanes included in this research. These findings suggest a relationship between reduced inner-core SST cooling (i.e., increased inner-core surface enthalpy flux) and tropical cyclone intensification. Similar results were not found when changes in storm intensity were compared with ambient SST or upper-ocean heat content conditions ahead of the storm. Under certain circumstances, the variability associated with inner-core SST change appears to be an important factor directly linked to the intensity change process.

Full access
Jun A. Zhang
and
Eric W. Uhlhorn

Abstract

This study presents an analysis of near-surface (10 m) inflow angles using wind vector data from over 1600 quality-controlled global positioning system dropwindsondes deployed by aircraft on 187 flights into 18 hurricanes. The mean inflow angle in hurricanes is found to be −22.6° ± 2.2° (95% confidence). Composite analysis results indicate little dependence of storm-relative axisymmetric inflow angle on local surface wind speed, and a weak but statistically significant dependence on the radial distance from the storm center. A small, but statistically significant dependence of the axisymmetric inflow angle on storm intensity is also found, especially well outside the eyewall. By compositing observations according to radial and azimuthal location relative to storm motion direction, significant inflow angle asymmetries are found to depend on storm motion speed, although a large amount of unexplained variability remains. Generally, the largest storm-relative inflow angles (<−50°) are found in the fastest-moving storms (>8 m s−1) at large radii (>8 times the radius of maximum wind) in the right-front storm quadrant, while the smallest inflow angles (>−10°) are found in the fastest-moving storms in the left-rear quadrant. Based on these observations, a parametric model of low-wavenumber inflow angle variability as a function of radius, azimuth, storm intensity, and motion speed is developed. This model can be applied for purposes of ocean surface remote sensing studies when wind direction is either unknown or ambiguous, for forcing storm surge, surface wave, and ocean circulation models that require a parametric surface wind vector field, and evaluating surface wind field structure in numerical models of tropical cyclones.

Full access
Eric W. Uhlhorn
and
David S. Nolan

Abstract

The maximum surface wind speed is an important parameter for tropical cyclone operational analysis and forecasting, since it defines the intensity of a cyclone. Operational forecast centers typically refer the wind speed to a maximum 1- or 10-min averaged value. Aircraft reconnaissance provides measurements of surface winds; however, because of the large variation of winds in the eyewall, it remains unclear to what extent observing the maximum wind is limited by the sampling pattern. Estimating storm intensity as simply the maximum of the observed winds is generally assumed by forecasters to underestimate the true storm intensity. The work presented herein attempts to quantify this difference by applying a methodology borrowed from the observing system simulation experiment concept, in which simulated “observations” are drawn from a numerical model. These “observations” may then be compared to the actual peak wind speed of the simulation. By sampling a high-resolution numerical simulation of Hurricane Isabel (2003) with a virtual aircraft equipped with a stepped-frequency microwave radiometer flying a standard “figure-four” pattern, the authors find that the highest wind observed over a flight typically underestimates the 1-min averaged model wind speed by 8.5% ± 1.5%. In contrast, due to its corresponding larger spatial scale, the 10-min averaged maximum wind speed is far less underestimated (1.5% ± 1.7%) using the same sampling method. These results support the National Hurricane Center’s practice, which typically assumes that the peak 1-min wind is somewhat greater than the highest observed wind speed over a single reconnaissance aircraft mission.

Full access
Benjamin Jaimes
,
Lynn K. Shay
, and
Eric W. Uhlhorn

Abstract

Using dropsondes from 27 aircraft flights, in situ observations, and satellite data acquired during Tropical Cyclone Earl (category 4 hurricane), bulk air–sea fluxes of enthalpy and momentum are investigated in relation to intensity change and underlying upper-ocean thermal structure. During Earl’s rapid intensification (RI) period, ocean heat content (OHC) variability relative to the 26°C isotherm exceeded 90 kJ cm−2, and sea surface cooling was less than 0.5°C. Enthalpy fluxes of ~1.1 kW m−2 were estimated for Earl’s peak intensity. Daily sea surface heat losses of , , and kJ cm−2 were estimated for RI, mature, and weakening stages, respectively. A ratio of the exchange coefficients of enthalpy (C K ) and momentum (C D ) between 0.54 and 0.7 produced reliable estimates for the fluxes relative to OHC changes, even during RI; a ratio overestimated the fluxes.

The most important result is that bulk enthalpy fluxes were controlled by the thermodynamic disequilibrium between the sea surface and the near-surface air, independently of wind speed. This disequilibrium was strongly influenced by underlying warm oceanic features; localized maxima in enthalpy fluxes developed over tight horizontal gradients of moisture disequilibrium over these eddy features. These regions of local buoyant forcing preferentially developed during RI. The overall magnitude of the moisture disequilibrium (Δq = q s − q a ) was determined by the saturation specific humidity at sea surface temperature (q s ) rather than by the specific humidity of the atmospheric environment (q a ). These results support the hypothesis that intense local buoyant forcing by the ocean could be an important intensification mechanism in tropical cyclones over warm oceanic features.

Full access
David S. Nolan
,
Jun A. Zhang
, and
Eric W. Uhlhorn

Abstract

This study uses an observing system simulation experiment (OSSE) approach to test the limitations of even nearly ideal observing systems to capture the peak wind speed occurring within a tropical storm or hurricane. The dataset is provided by a 1-km resolution simulation of an Atlantic hurricane with surface wind speeds saved every 10 s. An optimal observing system consisting of a dense field of anemometers provides perfect measurements of the peak 1-min wind speed as well as the average peak wind speed. Suboptimal observing systems consisting of a small number of anemometers are sampled and compared to the truth provided by the optimal observing system. Results show that a single, perfect anemometer experiencing a direct hit by the right side of the eyewall will underestimate the actual peak intensity by 10%–20%. Even an unusually large number of anemometers (e.g., 3–5) experiencing direct hits by the storm together will underestimate the peak wind speeds by 5%–10%. However, the peak winds of just one or two anemometers will provide on average a good estimate of the average peak intensity over several hours. Enhancing the variability of the simulated winds to better match observed winds does not change the results. Adding observational errors generally increases the reported peak winds, thus reducing the underestimates. If the average underestimate (negative bias) were known perfectly for each case, it could be used to correct the wind speeds, leaving only mean absolute errors of 3%–5%.

Full access
Eric W. Uhlhorn
,
Bradley W. Klotz
,
Tomislava Vukicevic
,
Paul D. Reasor
, and
Robert F. Rogers

Abstract

Wavenumber-1 wind speed asymmetries in 35 hurricanes are quantified in terms of their amplitude and phase, based on aircraft observations from 128 individual flights between 1998 and 2011. The impacts of motion and 850–200-mb environmental vertical shear are examined separately to estimate the resulting asymmetric structures at the sea surface and standard 700-mb reconnaissance flight level. The surface asymmetry amplitude is on average around 50% smaller than found at flight level, and while the asymmetry amplitude grows in proportion to storm translation speed at the flight level, no significant growth at the surface is observed, contrary to conventional assumption. However, a significant upwind storm-motion-relative phase rotation is found at the surface as translation speed increases, while the flight-level phase remains fairly constant. After removing the estimated impact of storm motion on the asymmetry, a significant residual shear direction-relative asymmetry is found, particularly at the surface, and, on average, is located downshear to the left of shear. Furthermore, the shear-relative phase has a significant downwind rotation as shear magnitude increases, such that the maximum rotates from the downshear to left-of-shear azimuthal location. By stratifying observations according to shear-relative motion, this general pattern of a left-of-shear residual wind speed maximum is found regardless of the orientation between the storm’s heading and shear direction. These results are quite consistent with recent observational studies relating western Pacific typhoon wind asymmetries to environmental shear. Finally, changes in wind asymmetry over a 5-day period during Hurricane Earl (2010) are analyzed to understand the combined impacts of motion and the evolving shear.

Full access
Joseph J. Cione
,
Evan A. Kalina
,
Jun A. Zhang
, and
Eric W. Uhlhorn

Abstract

Recent enhancements to the tropical cyclone-buoy database (TCBD) have incorporated data from the Extended Best Track (EBT) and the Statistical Hurricane Intensity Prediction Scheme (SHIPS) archive for tropical cyclones between 1975 and 2007. This information is used to analyze the relationships between large-scale atmospheric parameters, radial and shear-relative air–sea structure, and intensity change in strengthening and weakening hurricanes. Observations from this research illustrate that the direction of the large-scale vertical wind shear at mid- to low levels can impact atmospheric moisture conditions found near the surface. Drier low-level environments were associated with northerly shear conditions. In a separate analysis comparing strengthening and weakening hurricanes, drier surface conditions were also found for the intensifying sample. Since SST conditions were similar for both groups of storms, it is likely that the atmosphere was primarily responsible for modifying the near-surface thermodynamic environment (and ultimately surface moisture flux conditions) for this particular analysis.

Full access
Eric W. Uhlhorn
,
Peter G. Black
,
James L. Franklin
,
Mark Goodberlet
,
James Carswell
, and
Alan S. Goldstein

Abstract

For the first time, the NOAA/Aircraft Operations Center (AOC) flew stepped frequency microwave radiometers (SFMRs) on both WP-3D research aircraft for operational hurricane surface wind speed measurement in 2005. An unprecedented number of major hurricanes provided ample data to evaluate both instrument performance and surface wind speed retrieval quality up to 70 m s−1 (Saffir–Simpson category 5). To this end, a new microwave emissivity–wind speed model function based on estimates of near-surface winds in hurricanes by global positioning system (GPS) dropwindsondes is proposed. For practical purposes, utilizing this function removes a previously documented high bias in moderate SFMR-measured wind speeds (10–50 m s−1), and additionally corrects an extreme wind speed (>60 m s−1) underestimate. The AOC operational SFMRs yield retrievals that are precise to within ∼2% at 30 m s−1, which is a factor of 2 improvement over the NOAA Hurricane Research Division’s SFMR, and comparable to the precision found here for GPS dropwindsonde near-surface wind speeds. A small (1.6 m s−1), but statistically significant, overall high bias was found for independent SFMR measurements utilizing emissivity data not used for model function development. Across the range of measured wind speeds (10–70 m s−1), SFMR 10-s averaged wind speeds are within 4 m s−1 (rms) of the dropwindsonde near-surface estimate, or 5%–25% depending on speed. However, an analysis of eyewall peak wind speeds indicates an overall 2.6 m s−1 GPS low bias relative to the peak SFMR estimate on the same flight leg, suggesting a real increase in the maximum wind speed estimate due to SFMR’s high-density sampling. Through a series of statistical tests, the SFMR is shown to reduce the overall bias in the peak surface wind speed estimate by ∼50% over the current flight-level wind reduction method and is comparable at extreme wind speeds. The updated model function is demonstrated to behave differently below and above the hurricane wind speed threshold (∼32 m s−1), which may have implications for air–sea momentum and kinetic energy exchange. The change in behavior is at least qualitatively consistent with recent laboratory and field results concerning the drag coefficient in high wind speed conditions, which show a fairly clear “leveling off” of the drag coefficient with increased wind speed above ∼30 m s−1. Finally, a composite analysis of historical data indicates that the earth-relative SFMR peak wind speed is typically located in the hurricane’s right-front quadrant, which is consistent with previous observational and theoretical studies of surface wind structure.

Full access
Jun A. Zhang
,
Robert F. Rogers
,
Paul D. Reasor
,
Eric W. Uhlhorn
, and
Frank D. Marks Jr.

Abstract

This study investigates the asymmetric structure of the hurricane boundary layer in relation to the environmental vertical wind shear in the inner core region. Data from 1878 GPS dropsondes deployed by research aircraft in 19 hurricanes are analyzed in a composite framework. Kinematic structure analyses based on Doppler radar data from 75 flights are compared with the dropsonde composites. Shear-relative quadrant-mean composite analyses show that both the kinematic and thermodynamic boundary layer height scales tend to decrease with decreasing radius, consistent with previous axisymmetric analyses. There is still a clear separation between the kinematic and thermodynamic boundary layer heights. Both the thermodynamic mixed layer and height of maximum tangential wind speed are within the inflow layer. The inflow layer depth is found to be deeper in quadrants downshear, with the downshear right (DR) quadrant being the deepest. The mixed layer depth and height of maximum tangential wind speed are alike at the eyewall, but are deeper outside in quadrants left of the shear. The results also suggest that air parcels acquire equivalent potential temperature θe from surface fluxes as they rotate through the upshear right (UR) quadrant from the upshear left (UL) quadrant. Convection is triggered in the DR quadrant in the presence of asymmetric mesoscale lifting coincident with a maximum in θe . Energy is then released by latent heating in the downshear left (DL) quadrant. Convective downdrafts bring down cool and dry air to the surface and lower θe again in the DL and UL quadrants. This cycling process may be directly tied to shear-induced asymmetry of convection in hurricanes.

Full access