Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: Eugene S. Takle x
- Journal of Hydrometeorology x
- Refine by Access: All Content x
Abstract
Changes in major climatic and hydrological quantities in the upper Mississippi River basin and their interrelationships are studied with the Soil and Water Assessment Tool being driven by the contemporary climate and future scenario simulations of 10 global models in the Intergovernmental Panel on Climate Change (IPCC) Data Archive. Although the seasonal cycles of climate and hydrological quantities simulated by the 10 models have differences, the ensemble is very close to the observation. Ensemble predictions show that with warming in all months, precipitation decreases in summer but increases in all other seasons. Correspondingly, streamflow decreases in all seasons except winter, evapotranspiration decreases in July–September and increases in all other months, and snowmelt increases in winter but decreases in spring and fall. To understand the linkages between the cross-century changes of climate and hydrological quantities and the relative importance of the changes of temperature and precipitation to the changes of hydrological quantities, relationships between interannual variations of these quantities are investigated. It is shown that the change rates of the hydrological quantities with respect to temperature and precipitation obtained from regressions of interannual variations can vary greatly from month to month; however, on a monthly basis, they do not change much from the current to the future periods. Evaluations with these change rates indicate that for interannual variations of hydrological quantities, both variations of temperature and precipitation are important, and their relative importance depends on the month of the year. However, the changes of hydrological quantities from the means of the current years to the means of the future are dominated by warming in all months, and the influence from change of precipitation is much smaller. The changes of the hydrological quantities can be well predicted with the change rates from the warming alone.
Abstract
Changes in major climatic and hydrological quantities in the upper Mississippi River basin and their interrelationships are studied with the Soil and Water Assessment Tool being driven by the contemporary climate and future scenario simulations of 10 global models in the Intergovernmental Panel on Climate Change (IPCC) Data Archive. Although the seasonal cycles of climate and hydrological quantities simulated by the 10 models have differences, the ensemble is very close to the observation. Ensemble predictions show that with warming in all months, precipitation decreases in summer but increases in all other seasons. Correspondingly, streamflow decreases in all seasons except winter, evapotranspiration decreases in July–September and increases in all other months, and snowmelt increases in winter but decreases in spring and fall. To understand the linkages between the cross-century changes of climate and hydrological quantities and the relative importance of the changes of temperature and precipitation to the changes of hydrological quantities, relationships between interannual variations of these quantities are investigated. It is shown that the change rates of the hydrological quantities with respect to temperature and precipitation obtained from regressions of interannual variations can vary greatly from month to month; however, on a monthly basis, they do not change much from the current to the future periods. Evaluations with these change rates indicate that for interannual variations of hydrological quantities, both variations of temperature and precipitation are important, and their relative importance depends on the month of the year. However, the changes of hydrological quantities from the means of the current years to the means of the future are dominated by warming in all months, and the influence from change of precipitation is much smaller. The changes of the hydrological quantities can be well predicted with the change rates from the warming alone.
Abstract
Precipitation from a 10-yr regional climate simulation is evaluated using three complementary analyses: self-organizing maps, bias scores, and arithmetic bias. Collectively, the three reveal a precipitation deficit in the south-central United States that emerges in September and lingers through February. Deficient precipitation for this region and time of year is also evident in other simulations, indicating a generic problem in climate simulation.
Analysis of terrestrial and atmospheric water balances shows that the 10-yr average precipitation error for the region results primarily from a deficit in horizontal water vapor convergence. However, the 10-yr average for fall only suggests that the primary contributor is a deficit in evapotranspiration. Evaluation of simulated temperature and soil moisture suggests the model has insufficient terrestrial water for evaporation during fall. Results for winter are mixed; errors in both evapotranspiration and lateral moisture convergence may contribute substantially to the precipitation deficit. The model reproduces well both the time-average and time-filtered large-scale circulation, implying that the moisture convergence error arises from an error in simulating mesoscale circulation.
Abstract
Precipitation from a 10-yr regional climate simulation is evaluated using three complementary analyses: self-organizing maps, bias scores, and arithmetic bias. Collectively, the three reveal a precipitation deficit in the south-central United States that emerges in September and lingers through February. Deficient precipitation for this region and time of year is also evident in other simulations, indicating a generic problem in climate simulation.
Analysis of terrestrial and atmospheric water balances shows that the 10-yr average precipitation error for the region results primarily from a deficit in horizontal water vapor convergence. However, the 10-yr average for fall only suggests that the primary contributor is a deficit in evapotranspiration. Evaluation of simulated temperature and soil moisture suggests the model has insufficient terrestrial water for evaporation during fall. Results for winter are mixed; errors in both evapotranspiration and lateral moisture convergence may contribute substantially to the precipitation deficit. The model reproduces well both the time-average and time-filtered large-scale circulation, implying that the moisture convergence error arises from an error in simulating mesoscale circulation.
Abstract
A regional climate model simulation of the period of 1979–88 over the contiguous United States, driven by lateral boundary conditions from the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis, was analyzed to assess the ability of the model to simulate heavy precipitation events and seasonal precipitation anomalies. Heavy events were defined by precipitation totals that exceed the threshold value for a specified return period and duration. The model magnitudes of the thresholds for 1-day heavy precipitation events were in good agreement with observed thresholds for much of the central United States. Model thresholds were greater than observed for the eastern and intermountain western portions of the region and were smaller than observed for the lower Mississippi River basin. For 7-day events, model thresholds were in good agreement with observed thresholds for the eastern United States and Great Plains, were less than observed for the most of the Mississippi River valley, and were greater than observed for the intermountain western region. The interannual variability in frequency of heavy events in the model simulation exhibited similar behavior to that of the observed variability in the South, Southwest, West, and North-Central study regions. The agreement was poorer for the Midwest and Northeast, although the magnitude of variability was similar for both model and observations. There was good agreement between the model and observational data in the seasonal distribution of extreme events for the West and North-Central study regions; in the Southwest, Midwest, and Northeast, there were general similarities but some differences in the details of the distributions. The most notable differences occurred for the southern Gulf Coast region, for which the model produced a summer peak that is not present in the observational data. There was not a very high correlation in the timing of individual heavy events between the model and observations, reflecting differences between model and observations in the speed and path of many of the synoptic-scale events triggering the precipitation.
Abstract
A regional climate model simulation of the period of 1979–88 over the contiguous United States, driven by lateral boundary conditions from the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis, was analyzed to assess the ability of the model to simulate heavy precipitation events and seasonal precipitation anomalies. Heavy events were defined by precipitation totals that exceed the threshold value for a specified return period and duration. The model magnitudes of the thresholds for 1-day heavy precipitation events were in good agreement with observed thresholds for much of the central United States. Model thresholds were greater than observed for the eastern and intermountain western portions of the region and were smaller than observed for the lower Mississippi River basin. For 7-day events, model thresholds were in good agreement with observed thresholds for the eastern United States and Great Plains, were less than observed for the most of the Mississippi River valley, and were greater than observed for the intermountain western region. The interannual variability in frequency of heavy events in the model simulation exhibited similar behavior to that of the observed variability in the South, Southwest, West, and North-Central study regions. The agreement was poorer for the Midwest and Northeast, although the magnitude of variability was similar for both model and observations. There was good agreement between the model and observational data in the seasonal distribution of extreme events for the West and North-Central study regions; in the Southwest, Midwest, and Northeast, there were general similarities but some differences in the details of the distributions. The most notable differences occurred for the southern Gulf Coast region, for which the model produced a summer peak that is not present in the observational data. There was not a very high correlation in the timing of individual heavy events between the model and observations, reflecting differences between model and observations in the speed and path of many of the synoptic-scale events triggering the precipitation.
Abstract
This paper analyzes the ability of the North American Regional Climate Change Assessment Program (NARCCAP) ensemble of regional climate models to simulate extreme monthly precipitation and its supporting circulation for regions of North America, comparing 18 years of simulations driven by the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis with observations. The analysis focuses on the wettest 10% of months during the cold half of the year (October–March), when it is assumed that resolved synoptic circulation governs precipitation. For a coastal California region where the precipitation is largely topographic, the models individually and collectively replicate well the monthly frequency of extremes, the amount of extreme precipitation, and the 500-hPa circulation anomaly associated with the extremes. The models also replicate very well the statistics of the interannual variability of occurrences of extremes. For an interior region containing the upper Mississippi River basin, where precipitation is more dependent on internally generated storms, the models agree with observations in both monthly frequency and magnitude, although not as closely as for coastal California. In addition, simulated circulation anomalies for extreme months are similar to those in observations. Each region has important seasonally varying precipitation processes that govern the occurrence of extremes in the observations, and the models appear to replicate well those variations.
Abstract
This paper analyzes the ability of the North American Regional Climate Change Assessment Program (NARCCAP) ensemble of regional climate models to simulate extreme monthly precipitation and its supporting circulation for regions of North America, comparing 18 years of simulations driven by the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis with observations. The analysis focuses on the wettest 10% of months during the cold half of the year (October–March), when it is assumed that resolved synoptic circulation governs precipitation. For a coastal California region where the precipitation is largely topographic, the models individually and collectively replicate well the monthly frequency of extremes, the amount of extreme precipitation, and the 500-hPa circulation anomaly associated with the extremes. The models also replicate very well the statistics of the interannual variability of occurrences of extremes. For an interior region containing the upper Mississippi River basin, where precipitation is more dependent on internally generated storms, the models agree with observations in both monthly frequency and magnitude, although not as closely as for coastal California. In addition, simulated circulation anomalies for extreme months are similar to those in observations. Each region has important seasonally varying precipitation processes that govern the occurrence of extremes in the observations, and the models appear to replicate well those variations.
Abstract
Thirteen regional climate model (RCM) simulations of June–July 1993 were compared with each other and observations. Water vapor conservation and precipitation characteristics in each RCM were examined for a 10° × 10° subregion of the upper Mississippi River basin, containing the region of maximum 60-day accumulated precipitation in all RCMs and station reports.
All RCMs produced positive precipitation minus evapotranspiration (P − E > 0), though most RCMs produced P − E below the observed range. RCM recycling ratios were within the range estimated from observations. No evidence of common errors of E was found. In contrast, common dry bias of P was found in the simulations.
Daily cycles of terms in the water vapor conservation equation were qualitatively similar in most RCMs. Nocturnal maximums of P and C (convergence) occurred in 9 of 13 RCMs, consistent with observations. Three of the four driest simulations failed to couple P and C overnight, producing afternoon maximum P. Further, dry simulations tended to produce a larger fraction of their 60-day accumulated precipitation from low 3-h totals.
In station reports, accumulation from high (low) 3-h totals had a nocturnal (early morning) maximum. This time lag occurred, in part, because many mesoscale convective systems had reached peak intensity overnight and had declined in intensity by early morning. None of the RCMs contained such a time lag. It is recommended that short-period experiments be performed to examine the ability of RCMs to simulate mesoscale convective systems prior to generating long-period simulations for hydroclimatology.
Abstract
Thirteen regional climate model (RCM) simulations of June–July 1993 were compared with each other and observations. Water vapor conservation and precipitation characteristics in each RCM were examined for a 10° × 10° subregion of the upper Mississippi River basin, containing the region of maximum 60-day accumulated precipitation in all RCMs and station reports.
All RCMs produced positive precipitation minus evapotranspiration (P − E > 0), though most RCMs produced P − E below the observed range. RCM recycling ratios were within the range estimated from observations. No evidence of common errors of E was found. In contrast, common dry bias of P was found in the simulations.
Daily cycles of terms in the water vapor conservation equation were qualitatively similar in most RCMs. Nocturnal maximums of P and C (convergence) occurred in 9 of 13 RCMs, consistent with observations. Three of the four driest simulations failed to couple P and C overnight, producing afternoon maximum P. Further, dry simulations tended to produce a larger fraction of their 60-day accumulated precipitation from low 3-h totals.
In station reports, accumulation from high (low) 3-h totals had a nocturnal (early morning) maximum. This time lag occurred, in part, because many mesoscale convective systems had reached peak intensity overnight and had declined in intensity by early morning. None of the RCMs contained such a time lag. It is recommended that short-period experiments be performed to examine the ability of RCMs to simulate mesoscale convective systems prior to generating long-period simulations for hydroclimatology.