Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: F. Chen x
- Weather and Forecasting x
- Refine by Access: All Content x
Abstract
In an effort to improve the tropical cyclone track forecast, two preprocessing procedures are applied to an operational baroclinic forecast system at the Central Weather Bureau (CWB) in Taipei. The first replaces the environmental wind field near the storm by the previous 6-h.movement vector of the storm. The second incorporates a wavenumber-1 asymmetry constructed by matching the flow at the center of the asymmetry with the previous 6-h storm movement. Applying both processes to the 32 typhoon casts archived at the CWB in 1990 reduces the averaged 48-h forecast distance error from 474 to 351 km.
Multiexisting typhoons may have interactions among themselves that depend on relative intensity. Proper representation of the intensities in the initial bogus is important for the track forecast. Experiments with different initial bogus intensities are conducted on a case of dual typhoons-Nat and Mireille in 1991. The forecast using different bogus vortices according to the estimated intensities of each typhoon gives substantially smaller errors than that using identical bogus vortices. The impact of initial bogus vortex intensity on the track forecast for single typhoon cases is also illustrated.
Abstract
In an effort to improve the tropical cyclone track forecast, two preprocessing procedures are applied to an operational baroclinic forecast system at the Central Weather Bureau (CWB) in Taipei. The first replaces the environmental wind field near the storm by the previous 6-h.movement vector of the storm. The second incorporates a wavenumber-1 asymmetry constructed by matching the flow at the center of the asymmetry with the previous 6-h storm movement. Applying both processes to the 32 typhoon casts archived at the CWB in 1990 reduces the averaged 48-h forecast distance error from 474 to 351 km.
Multiexisting typhoons may have interactions among themselves that depend on relative intensity. Proper representation of the intensities in the initial bogus is important for the track forecast. Experiments with different initial bogus intensities are conducted on a case of dual typhoons-Nat and Mireille in 1991. The forecast using different bogus vortices according to the estimated intensities of each typhoon gives substantially smaller errors than that using identical bogus vortices. The impact of initial bogus vortex intensity on the track forecast for single typhoon cases is also illustrated.
Abstract
The evolution of the daytime planetary boundary layer (PBL) and its association with warm-season precipitation is strongly impacted by land–atmosphere heat and moisture exchange (hereafter surface exchange). However, substantial uncertainty exists in the parameterization of the surface exchange in numerical weather prediction (NWP) models. In the current study, the authors examine 0–24-h convection-permitting forecasts with different surface exchange strengths for a 6-day period during the International H2O Project (IHOP_2002). Results indicate sensitivity in the timing of simulated afternoon convection initiation and subsequent precipitation amounts to variations in surface exchange strength. Convection initiation in simulations with weak surface exchange was delayed by 2–3 h compared to simulations with strong surface exchange, and area-averaged total precipitation amounts were less by up to a factor of 2. Over the western high plains (105°–100°W longitude), where deep convection is locally generated, simulations using a formulation for surface exchange that varied with the vegetation category (height) produced area-averaged diurnal cycles of forecasted precipitation amounts in better agreement with observations than simulations that used the current Advanced Research Weather Research and Forecasting Model (ARW-WRF) formulation. Parcel theory is used to diagnose mechanisms by which differences in surface exchange influence convection initiation in individual case studies. The more rapid initiation in simulations with strong surface exchange results from a more rapid removal of negative buoyancy beneath the level of free convection, which arises primarily from greater PBL warming.
Abstract
The evolution of the daytime planetary boundary layer (PBL) and its association with warm-season precipitation is strongly impacted by land–atmosphere heat and moisture exchange (hereafter surface exchange). However, substantial uncertainty exists in the parameterization of the surface exchange in numerical weather prediction (NWP) models. In the current study, the authors examine 0–24-h convection-permitting forecasts with different surface exchange strengths for a 6-day period during the International H2O Project (IHOP_2002). Results indicate sensitivity in the timing of simulated afternoon convection initiation and subsequent precipitation amounts to variations in surface exchange strength. Convection initiation in simulations with weak surface exchange was delayed by 2–3 h compared to simulations with strong surface exchange, and area-averaged total precipitation amounts were less by up to a factor of 2. Over the western high plains (105°–100°W longitude), where deep convection is locally generated, simulations using a formulation for surface exchange that varied with the vegetation category (height) produced area-averaged diurnal cycles of forecasted precipitation amounts in better agreement with observations than simulations that used the current Advanced Research Weather Research and Forecasting Model (ARW-WRF) formulation. Parcel theory is used to diagnose mechanisms by which differences in surface exchange influence convection initiation in individual case studies. The more rapid initiation in simulations with strong surface exchange results from a more rapid removal of negative buoyancy beneath the level of free convection, which arises primarily from greater PBL warming.