Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: G. W. ROBERTSON x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
F. R. Robertson
,
G. S. Wilson
,
H. J. Christian Jr.
,
S. J. Goodman
,
G. H. Fichtl
, and
W. W. Vaughan

The present lack of a lower atmosphere research satellite program for the 1980s has prompted consideration of the Space Shuttle/Spacelab system as a means of flying sensor complements geared toward specific research problems, as well as continued instrument development. Three specific examples of possible science questions related to precipitation are discussed: 1) spatial structure of mesoscale cloud and precipitation systems, 2) lightning and storm development, and 3) cyclone intensification over oceanic regions. Examples of space sensors available to provide measurements needed in addressing these questions are also presented. Distinctive aspects of low-earth orbit experiments would be high resolution, multispectral sensing of atmospheric phenomena by complements of instruments, and more efficient sensor development through reflights of specific hardware packages.

Full access
Christopher J. White
,
Daniela I. V. Domeisen
,
Nachiketa Acharya
,
Elijah A. Adefisan
,
Michael L. Anderson
,
Stella Aura
,
Ahmed A. Balogun
,
Douglas Bertram
,
Sonia Bluhm
,
David J. Brayshaw
,
Jethro Browell
,
Dominik Büeler
,
Andrew Charlton-Perez
,
Xandre Chourio
,
Isadora Christel
,
Caio A. S. Coelho
,
Michael J. DeFlorio
,
Luca Delle Monache
,
Francesca Di Giuseppe
,
Ana María García-Solórzano
,
Peter B. Gibson
,
Lisa Goddard
,
Carmen González Romero
,
Richard J. Graham
,
Robert M. Graham
,
Christian M. Grams
,
Alan Halford
,
W. T. Katty Huang
,
Kjeld Jensen
,
Mary Kilavi
,
Kamoru A. Lawal
,
Robert W. Lee
,
David MacLeod
,
Andrea Manrique-Suñén
,
Eduardo S. P. R. Martins
,
Carolyn J. Maxwell
,
William J. Merryfield
,
Ángel G. Muñoz
,
Eniola Olaniyan
,
George Otieno
,
John A. Oyedepo
,
Lluís Palma
,
Ilias G. Pechlivanidis
,
Diego Pons
,
F. Martin Ralph
,
Dirceu S. Reis Jr.
,
Tomas A. Remenyi
,
James S. Risbey
,
Donald J. C. Robertson
,
Andrew W. Robertson
,
Stefan Smith
,
Albert Soret
,
Ting Sun
,
Martin C. Todd
,
Carly R. Tozer
,
Francisco C. Vasconcelos Jr.
,
Ilaria Vigo
,
Duane E. Waliser
,
Fredrik Wetterhall
, and
Robert G. Wilson

Abstract

The subseasonal-to-seasonal (S2S) predictive time scale, encompassing lead times ranging from 2 weeks to a season, is at the frontier of forecasting science. Forecasts on this time scale provide opportunities for enhanced application-focused capabilities to complement existing weather and climate services and products. There is, however, a “knowledge–value” gap, where a lack of evidence and awareness of the potential socioeconomic benefits of S2S forecasts limits their wider uptake. To address this gap, here we present the first global community effort at summarizing relevant applications of S2S forecasts to guide further decision-making and support the continued development of S2S forecasts and related services. Focusing on 12 sectoral case studies spanning public health, agriculture, water resource management, renewable energy and utilities, and emergency management and response, we draw on recent advancements to explore their application and utility. These case studies mark a significant step forward in moving from potential to actual S2S forecasting applications. We show that by placing user needs at the forefront of S2S forecast development—demonstrating both skill and utility across sectors—this dialogue can be used to help promote and accelerate the awareness, value, and cogeneration of S2S forecasts. We also highlight that while S2S forecasts are increasingly gaining interest among users, incorporating probabilistic S2S forecasts into existing decision-making operations is not trivial. Nevertheless, S2S forecasting represents a significant opportunity to generate useful, usable, and actionable forecast applications for and with users that will increasingly unlock the potential of this forecasting time scale.

Full access
Kathy Pegion
,
Ben P. Kirtman
,
Emily Becker
,
Dan C. Collins
,
Emerson LaJoie
,
Robert Burgman
,
Ray Bell
,
Timothy DelSole
,
Dughong Min
,
Yuejian Zhu
,
Wei Li
,
Eric Sinsky
,
Hong Guan
,
Jon Gottschalck
,
E. Joseph Metzger
,
Neil P Barton
,
Deepthi Achuthavarier
,
Jelena Marshak
,
Randal D. Koster
,
Hai Lin
,
Normand Gagnon
,
Michael Bell
,
Michael K. Tippett
,
Andrew W. Robertson
,
Shan Sun
,
Stanley G. Benjamin
,
Benjamin W. Green
,
Rainer Bleck
, and
Hyemi Kim

Abstract

The Subseasonal Experiment (SubX) is a multimodel subseasonal prediction experiment designed around operational requirements with the goal of improving subseasonal forecasts. Seven global models have produced 17 years of retrospective (re)forecasts and more than a year of weekly real-time forecasts. The reforecasts and forecasts are archived at the Data Library of the International Research Institute for Climate and Society, Columbia University, providing a comprehensive database for research on subseasonal to seasonal predictability and predictions. The SubX models show skill for temperature and precipitation 3 weeks ahead of time in specific regions. The SubX multimodel ensemble mean is more skillful than any individual model overall. Skill in simulating the Madden–Julian oscillation (MJO) and the North Atlantic Oscillation (NAO), two sources of subseasonal predictability, is also evaluated, with skillful predictions of the MJO 4 weeks in advance and of the NAO 2 weeks in advance. SubX is also able to make useful contributions to operational forecast guidance at the Climate Prediction Center. Additionally, SubX provides information on the potential for extreme precipitation associated with tropical cyclones, which can help emergency management and aid organizations to plan for disasters.

Free access
Michael J. DeFlorio
,
Agniv Sengupta
,
Christopher M. Castellano
,
Jiabao Wang
,
Zhenhai Zhang
,
Alexander Gershunov
,
Kristen Guirguis
,
Rosa Luna Niño
,
Rachel E. S. Clemesha
,
Ming Pan
,
Mu Xiao
,
Brian Kawzenuk
,
Peter B. Gibson
,
William Scheftic
,
Patrick D. Broxton
,
Matthew B. Switanek
,
Jing Yuan
,
Michael D. Dettinger
,
Chad W. Hecht
,
Daniel R. Cayan
,
Bruce D. Cornuelle
,
Arthur J. Miller
,
Julie Kalansky
,
Luca Delle Monache
,
F. Martin Ralph
,
Duane E. Waliser
,
Andrew W. Robertson
,
Xubin Zeng
,
David G. DeWitt
,
Jeanine Jones
, and
Michael L. Anderson

Abstract

California experienced a historic run of nine consecutive landfalling atmospheric rivers (ARs) in three weeks’ time during winter 2022/23. Following three years of drought from 2020 to 2022, intense landfalling ARs across California in December 2022–January 2023 were responsible for bringing reservoirs back to historical averages and producing damaging floods and debris flows. In recent years, the Center for Western Weather and Water Extremes and collaborating institutions have developed and routinely provided to end users peer-reviewed experimental seasonal (1–6 month lead time) and subseasonal (2–6 week lead time) prediction tools for western U.S. ARs, circulation regimes, and precipitation. Here, we evaluate the performance of experimental seasonal precipitation forecasts for winter 2022/23, along with experimental subseasonal AR activity and circulation forecasts during the December 2022 regime shift from dry conditions to persistent troughing and record AR-driven wetness over the western United States. Experimental seasonal precipitation forecasts were too dry across Southern California (likely due to their overreliance on La Niña), and the observed above-normal precipitation across Northern and Central California was underpredicted. However, experimental subseasonal forecasts skillfully captured the regime shift from dry to wet conditions in late December 2022 at 2–3 week lead time. During this time, an active MJO shift from phases 4 and 5 to 6 and 7 occurred, which historically tilts the odds toward increased AR activity over California. New experimental seasonal and subseasonal synthesis forecast products, designed to aggregate information across institutions and methods, are introduced in the context of this historic winter to provide situational awareness guidance to western U.S. water managers.

Open access
F. Vitart
,
C. Ardilouze
,
A. Bonet
,
A. Brookshaw
,
M. Chen
,
C. Codorean
,
M. Déqué
,
L. Ferranti
,
E. Fucile
,
M. Fuentes
,
H. Hendon
,
J. Hodgson
,
H.-S. Kang
,
A. Kumar
,
H. Lin
,
G. Liu
,
X. Liu
,
P. Malguzzi
,
I. Mallas
,
M. Manoussakis
,
D. Mastrangelo
,
C. MacLachlan
,
P. McLean
,
A. Minami
,
R. Mladek
,
T. Nakazawa
,
S. Najm
,
Y. Nie
,
M. Rixen
,
A. W. Robertson
,
P. Ruti
,
C. Sun
,
Y. Takaya
,
M. Tolstykh
,
F. Venuti
,
D. Waliser
,
S. Woolnough
,
T. Wu
,
D.-J. Won
,
H. Xiao
,
R. Zaripov
, and
L. Zhang

Abstract

Demands are growing rapidly in the operational prediction and applications communities for forecasts that fill the gap between medium-range weather and long-range or seasonal forecasts. Based on the potential for improved forecast skill at the subseasonal to seasonal time range, the Subseasonal to Seasonal (S2S) Prediction research project has been established by the World Weather Research Programme/World Climate Research Programme. A main deliverable of this project is the establishment of an extensive database containing subseasonal (up to 60 days) forecasts, 3 weeks behind real time, and reforecasts from 11 operational centers, modeled in part on the The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database for medium-range forecasts (up to 15 days).

The S2S database, available to the research community since May 2015, represents an important tool to advance our understanding of the subseasonal to seasonal time range that has been considered for a long time as a “desert of predictability.” In particular, this database will help identify common successes and shortcomings in the model simulation and prediction of sources of subseasonal to seasonal predictability. For instance, a preliminary study suggests that the S2S models significantly underestimate the amplitude of the Madden–Julian oscillation (MJO) teleconnections over the Euro-Atlantic sector. The S2S database also represents an important tool for case studies of extreme events. For instance, a multimodel combination of S2S models displays higher probability of a landfall over the islands of Vanuatu 2–3 weeks before Tropical Cyclone Pam devastated the islands in March 2015.

Full access
William J. Merryfield
,
Johanna Baehr
,
Lauriane Batté
,
Emily J. Becker
,
Amy H. Butler
,
Caio A. S. Coelho
,
Gokhan Danabasoglu
,
Paul A. Dirmeyer
,
Francisco J. Doblas-Reyes
,
Daniela I. V. Domeisen
,
Laura Ferranti
,
Tatiana Ilynia
,
Arun Kumar
,
Wolfgang A. Müller
,
Michel Rixen
,
Andrew W. Robertson
,
Doug M. Smith
,
Yuhei Takaya
,
Matthias Tuma
,
Frederic Vitart
,
Christopher J. White
,
Mariano S. Alvarez
,
Constantin Ardilouze
,
Hannah Attard
,
Cory Baggett
,
Magdalena A. Balmaseda
,
Asmerom F. Beraki
,
Partha S. Bhattacharjee
,
Roberto Bilbao
,
Felipe M. de Andrade
,
Michael J. DeFlorio
,
Leandro B. Díaz
,
Muhammad Azhar Ehsan
,
Georgios Fragkoulidis
,
Sam Grainger
,
Benjamin W. Green
,
Momme C. Hell
,
Johnna M. Infanti
,
Katharina Isensee
,
Takahito Kataoka
,
Ben P. Kirtman
,
Nicholas P. Klingaman
,
June-Yi Lee
,
Kirsten Mayer
,
Roseanna McKay
,
Jennifer V. Mecking
,
Douglas E. Miller
,
Nele Neddermann
,
Ching Ho Justin Ng
,
Albert Ossó
,
Klaus Pankatz
,
Simon Peatman
,
Kathy Pegion
,
Judith Perlwitz
,
G. Cristina Recalde-Coronel
,
Annika Reintges
,
Christoph Renkl
,
Balakrishnan Solaraju-Murali
,
Aaron Spring
,
Cristiana Stan
,
Y. Qiang Sun
,
Carly R. Tozer
,
Nicolas Vigaud
,
Steven Woolnough
, and
Stephen Yeager
Full access
William J. Merryfield
,
Johanna Baehr
,
Lauriane Batté
,
Emily J. Becker
,
Amy H. Butler
,
Caio A. S. Coelho
,
Gokhan Danabasoglu
,
Paul A. Dirmeyer
,
Francisco J. Doblas-Reyes
,
Daniela I. V. Domeisen
,
Laura Ferranti
,
Tatiana Ilynia
,
Arun Kumar
,
Wolfgang A. Müller
,
Michel Rixen
,
Andrew W. Robertson
,
Doug M. Smith
,
Yuhei Takaya
,
Matthias Tuma
,
Frederic Vitart
,
Christopher J. White
,
Mariano S. Alvarez
,
Constantin Ardilouze
,
Hannah Attard
,
Cory Baggett
,
Magdalena A. Balmaseda
,
Asmerom F. Beraki
,
Partha S. Bhattacharjee
,
Roberto Bilbao
,
Felipe M. de Andrade
,
Michael J. DeFlorio
,
Leandro B. Díaz
,
Muhammad Azhar Ehsan
,
Georgios Fragkoulidis
,
Alex O. Gonzalez
,
Sam Grainger
,
Benjamin W. Green
,
Momme C. Hell
,
Johnna M. Infanti
,
Katharina Isensee
,
Takahito Kataoka
,
Ben P. Kirtman
,
Nicholas P. Klingaman
,
June-Yi Lee
,
Kirsten Mayer
,
Roseanna McKay
,
Jennifer V. Mecking
,
Douglas E. Miller
,
Nele Neddermann
,
Ching Ho Justin Ng
,
Albert Ossó
,
Klaus Pankatz
,
Simon Peatman
,
Kathy Pegion
,
Judith Perlwitz
,
G. Cristina Recalde-Coronel
,
Annika Reintges
,
Christoph Renkl
,
Balakrishnan Solaraju-Murali
,
Aaron Spring
,
Cristiana Stan
,
Y. Qiang Sun
,
Carly R. Tozer
,
Nicolas Vigaud
,
Steven Woolnough
, and
Stephen Yeager

Abstract

Weather and climate variations on subseasonal to decadal time scales can have enormous social, economic, and environmental impacts, making skillful predictions on these time scales a valuable tool for decision-makers. As such, there is a growing interest in the scientific, operational, and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) time scales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) time scales, while the focus broadly remains similar (e.g., on precipitation, surface and upper-ocean temperatures, and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal variability and externally forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correction, calibration, and forecast quality assessment; model resolution; atmosphere–ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end-user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Programme (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis.

Free access