Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Geoff DiMego x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Jamie K. Wolff, Michelle Harrold, Tracy Hertneky, Eric Aligo, Jacob R. Carley, Brad Ferrier, Geoff DiMego, Louisa Nance, and Ying-Hwa Kuo

Abstract

A wide range of numerical weather prediction (NWP) innovations are under development in the research community that have the potential to positively impact operational models. The Developmental Testbed Center (DTC) helps facilitate the transition of these innovations from research to operations (R2O). With the large number of innovations available in the research community, it is critical to clearly define a testing protocol to streamline the R2O process. The DTC has defined such a process that relies on shared responsibilities of the researchers, the DTC, and operational centers to test promising new NWP advancements. As part of the first stage of this process, the DTC instituted the mesoscale model evaluation testbed (MMET), which established a common testing framework to assist the research community in demonstrating the merits of developments. The ability to compare performance across innovations for critical cases provides a mechanism for selecting the most promising capabilities for further testing. If the researcher demonstrates improved results using MMET, then the innovation may be considered for the second stage of comprehensive testing and evaluation (T&E) prior to entering the final stage of preimplementation T&E.

MMET provides initialization and observation datasets for several case studies and multiday periods. In addition, the DTC provides baseline results for select operational configurations that use the Advanced Research version of Weather Research and Forecasting Model (ARW) or the National Oceanic and Atmospheric Administration (NOAA) Environmental Modeling System Nonhydrostatic Multiscale Model on the B grid (NEMS-NMMB). These baselines can be used for testing sensitivities to different model versions or configurations in order to improve forecast performance.

Full access
Yihong Duan, Jiandong Gong, Jun Du, Martin Charron, Jing Chen, Guo Deng, Geoff DiMego, Masahiro Hara, Masaru Kunii, Xiaoli Li, Yinglin Li, Kazuo Saito, Hiromu Seko, Yong Wang, and Christoph Wittmann

The Beijing 2008 Olympics Research and Development Project (B08RDP), initiated in 2004 under the World Meteorological Organization (WMO) World Weather Research Programme (WWRP), undertook the research and development of mesoscale ensemble prediction systems (MEPSs) and their application to weather forecast support during the Beijing Olympic Games. Six MEPSs from six countries, representing the state-of-the-art regional EPSs with near-real-time capabilities and emphasizing on the 6–36-h forecast lead times, participated in the project.

The background, objectives, and implementation of B08RDP, as well as the six MEPSs, are reviewed. The accomplishments are summarized, which include 1) providing value-added service to the Olympic Games, 2) advancing MEPS-related research, 3) accelerating the transition from research to operations, and 4) training forecasters in utilizing forecast uncertainty products. The B08RDP has fulfilled its research (MEPS development) and demonstration (value-added service) purposes. The research conducted covers the areas of verification, examining the value of MEPS relative to other numerical weather prediction (NWP) systems, combining multimodel or multicenter ensembles, bias correction, ensemble perturbations [initial condition (IC), lateral boundary condition (LBC), land surface IC, and model physics], downscaling, forecast applications, data assimilation, and storm-scale ensemble modeling. Seven scientific issues important to MEPS have been identified. It is recognized that the daily use of forecast uncertainty information by forecasters remains a challenge. Development of forecaster-friendly products and training activities should be a long-term effort and needs to be continuously enhanced.

The B08RDP dataset is also a valuable asset to the research community. The experience gained in international collaboration, organization, and implementation of a multination regional EPS for a common goal and to address common scientific issues can be shared by the ongoing projects The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble—Limited Area Models (TIGGE-LAM) and North American Ensemble Forecast System—Limited Area Models (NAEFS-LAM).

Full access
Fedor Mesinger, Geoff DiMego, Eugenia Kalnay, Kenneth Mitchell, Perry C. Shafran, Wesley Ebisuzaki, Dušan Jović, Jack Woollen, Eric Rogers, Ernesto H. Berbery, Michael B. Ek, Yun Fan, Robert Grumbine, Wayne Higgins, Hong Li, Ying Lin, Geoff Manikin, David Parrish, and Wei Shi

In 1997, during the late stages of production of NCEP–NCAR Global Reanalysis (GR), exploration of a regional reanalysis project was suggested by the GR project's Advisory Committee, “particularly if the RDAS [Regional Data Assimilation System] is significantly better than the global reanalysis at capturing the regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.” Following a 6-yr development and production effort, NCEP's North American Regional Reanalysis (NARR) project was completed in 2004, and data are now available to the scientific community. Along with the use of the NCEP Eta model and its Data Assimilation System (at 32-km–45-layer resolution with 3-hourly output), the hallmarks of the NARR are the incorporation of hourly assimilation of precipitation, which leverages a comprehensive precipitation analysis effort, the use of a recent version of the Noah land surface model, and the use of numerous other datasets that are additional or improved compared to the GR. Following the practice applied to NCEP's GR, the 25-yr NARR retrospective production period (1979–2003) is augmented by the construction and daily execution of a system for near-real-time continuation of the NARR, known as the Regional Climate Data Assimilation System (R-CDAS). Highlights of the NARR results are presented: precipitation over the continental United States (CONUS), which is seen to be very near the ingested analyzed precipitation; fits of tropospheric temperatures and winds to rawinsonde observations; and fits of 2-m temperatures and 10-m winds to surface station observations. The aforementioned fits are compared to those of the NCEP–Department of Energy (DOE) Global Reanalysis (GR2). Not only have the expectations cited above been fully met, but very substantial improvements in the accuracy of temperatures and winds compared to that of GR2 are achieved throughout the troposphere. Finally, the numerous datasets produced are outlined and information is provided on the data archiving and present data availability.

Full access