Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Geoff DiMego x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Shun Liu, Geoff DiMego, Shucai Guan, V. Krishna Kumar, Dennis Keyser, Qin Xu, Kang Nai, Pengfei Zhang, Liping Liu, Jian Zhang, Kenneth Howard, and Jeff Ator

Abstract

Real-time access to level II radar data became available in May 2005 at the National Centers for Environmental Prediction (NCEP) Central Operations (NCO). Using these real-time data in operational data assimilation requires the data be processed reliably and efficiently through rigorous data quality controls. To this end, advanced radar data quality control techniques developed at the National Severe Storms Laboratory (NSSL) are combined into a comprehensive radar data processing system at NCEP. Techniques designed to create a high-resolution reflectivity mosaic developed at the NSSL are also adopted and installed within the NCEP radar data processing system to generate hourly 3D reflectivity mosaics and 2D-derived products. The processed radar radial velocity and 3D reflectivity mosaics are ingested into NCEP’s data assimilation systems to improve operational numerical weather predictions. The 3D reflectivity mosaics and 2D-derived products are also used for verification of high-resolution numerical weather prediction. The NCEP radar data processing system is described.

Full access
Tanya L. Otte, George Pouliot, Jonathan E. Pleim, Jeffrey O. Young, Kenneth L. Schere, David C. Wong, Pius C. S. Lee, Marina Tsidulko, Jeffery T. McQueen, Paula Davidson, Rohit Mathur, Hui-Ya Chuang, Geoff DiMego, and Nelson L. Seaman

Abstract

NOAA and the U.S. Environmental Protection Agency (EPA) have developed a national air quality forecasting (AQF) system that is based on numerical models for meteorology, emissions, and chemistry. The AQF system generates gridded model forecasts of ground-level ozone (O3) that can help air quality forecasters to predict and alert the public of the onset, severity, and duration of poor air quality conditions. Although AQF efforts have existed in metropolitan centers for many years, this AQF system provides a national numerical guidance product and the first-ever air quality forecasts for many (predominantly rural) areas of the United States. The AQF system is currently based on NCEP’s Eta Model and the EPA’s Community Multiscale Air Quality (CMAQ) modeling system. The AQF system, which was implemented into operations at the National Weather Service in September of 2004, currently generates twice-daily forecasts of O3 for the northeastern United States at 12-km horizontal grid spacing. Preoperational testing to support the 2003 and 2004 O3 forecast seasons showed that the AQF system provided valuable guidance that could be used in the air quality forecast process. The AQF system will be expanded over the next several years to include a nationwide domain, a capability for forecasting fine particle pollution, and a longer forecast period. State and local agencies will now issue air quality forecasts that are based, in part, on guidance from the AQF system. This note describes the process and software components used to link the Eta Model and CMAQ for the national AQF system, discusses several technical and logistical issues that were considered, and provides examples of O3 forecasts from the AQF system.

Full access
Manuel S. F. V. De Pondeca, Geoffrey S. Manikin, Geoff DiMego, Stanley G. Benjamin, David F. Parrish, R. James Purser, Wan-Shu Wu, John D. Horel, David T. Myrick, Ying Lin, Robert M. Aune, Dennis Keyser, Brad Colman, Greg Mann, and Jamie Vavra

Abstract

In 2006, the National Centers for Environmental Prediction (NCEP) implemented the Real-Time Mesoscale Analysis (RTMA) in collaboration with the Earth System Research Laboratory and the National Environmental, Satellite, and Data Information Service (NESDIS). In this work, a description of the RTMA applied to the 5-km resolution conterminous U.S. grid of the National Digital Forecast Database is given. Its two-dimensional variational data assimilation (2DVAR) component used to analyze near-surface observations is described in detail, and a brief discussion of the remapping of the NCEP stage II quantitative precipitation amount and NESDIS Geostationary Operational Environmental Satellite (GOES) sounder effective cloud amount to the 5-km grid is offered. Terrain-following background error covariances are used with the 2DVAR approach, which produces gridded fields of 2-m temperature, 2-m specific humidity, 2-m dewpoint, 10-m U and V wind components, and surface pressure. The estimate of the analysis uncertainty via the Lanczos method is briefly described. The strength of the 2DVAR is illustrated by (i) its ability to analyze a June 2007 cold temperature pool over the Washington, D.C., area; (ii) its fairly good analysis of a December 2008 mid-Atlantic region high-wind event that started from a very weak first guess; and (iii) its successful recovery of the finescale moisture features in a January 2010 case study over southern California. According to a cross-validation analysis for a 15-day period during November 2009, root-mean-square error improvements over the first guess range from 16% for wind speed to 45% for specific humidity.

Full access