Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Georg A. Grell x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Mrinal K. Biswas
,
Jun A. Zhang
,
Evelyn Grell
,
Evan Kalina
,
Kathryn Newman
,
Ligia Bernardet
,
Laurie Carson
,
James Frimel
, and
Georg Grell

Abstract

The Developmental Testbed Center (DTC) tested two convective parameterization schemes in the Hurricane Weather Research and Forecasting (HWRF) Model and compared them in terms of performance of forecasting tropical cyclones (TCs). Several TC forecasts were conducted with the scale-aware Simplified Arakawa Schubert (SAS) and Grell–Freitas (GF) convective schemes over the Atlantic basin. For this sample of over 100 cases, the storm track and intensity forecasts were superior for the GF scheme compared to SAS. A case study showed improved storm structure for GF when compared with radar observations. The GF run had increased inflow in the boundary layer, which resulted in higher angular momentum. An angular momentum budget analysis shows that the difference in the contribution of the eddy transport to the total angular momentum tendency is small between the two forecasts. The main difference is in the mean transport term, especially in the boundary layer. The temperature tendencies indicate higher contribution from the microphysics and cumulus heating above the boundary layer in the GF run. A temperature budget analysis indicated that both the temperature advection and diabatic heating were the dominant terms and they were larger near the storm center in the GF run than in the SAS run. The above results support the superior performance of the GF scheme for TC intensity forecast.

Free access
Partha S. Bhattacharjee
,
Li Zhang
,
Barry Baker
,
Li Pan
,
Raffaele Montuoro
,
Georg A. Grell
, and
Jeffery T. McQueen

Abstract

The NWS/NCEP recently implemented a new global deterministic aerosol forecast model named the Global Ensemble Forecast Systems Aerosols (GEFS-Aerosols), which is based on the Finite Volume version 3 GFS (FV3GFS). It replaced the operational NOAA Environmental Modeling System (NEMS) GFS Aerosol Component version 2 (NGACv2), which was based on a global spectral model (GSM). GEFS-Aerosols uses aerosol modules from the GOCART previously integrated in the WRF Model with Chemistry (WRF-Chem), FENGSHA dust scheme, and several other updates. In this study, we have extensively evaluated aerosol optical depth (AOD) forecasts from GEFS-Aerosols against various observations over a timespan longer than one year (2019–20). The total AOD improvement (in terms of seasonal mean) in GEFS-Aerosols is about 40% compared to NGACv2 in the fall and winter season of 2019. In terms of aerosol species, the biggest improvement came from the enhanced representation of biomass burning aerosol species as GEFS-Aerosols is able to capture more fire events in southern Africa, South America, and Asia than its predecessor. Dust AODs reproduce the seasonal variation over Africa and the Middle East. We have found that correlation of total AOD over large regions of the globe remains consistent for forecast days 3–5. However, we have found that GEFS-Aerosols generates some systematic positive biases for organic carbon AOD near biomass burning regions and sulfate AOD over prediction over East Asia. The addition of a data assimilation capability to GEFS-Aerosols in the near future is expected to address these biases and provide a positive impact to aerosol forecasts by the model.

Significance Statement

The purpose of this study is to quantify improvements associated with the newly implemented global aerosol forecast model at NWS/NCEP. The monthly and seasonal variations of AOD forecasts of various aerosol regimes are overall consistent with the observations. Our results provide a guide to downstream regional air quality models like CMAQ that will use GEFS-Aerosols to provide lateral boundary conditions.

Free access
Silvio N. Figueroa
,
José P. Bonatti
,
Paulo Y. Kubota
,
Georg A. Grell
,
Hugh Morrison
,
Saulo R. M. Barros
,
Julio P. R. Fernandez
,
Enver Ramirez
,
Leo Siqueira
,
Graziela Luzia
,
Josiane Silva
,
Juliana R. Silva
,
Jayant Pendharkar
,
Vinicius B. Capistrano
,
Débora S. Alvim
,
Diego P. Enoré
,
Fábio L. R. Diniz
,
Praki Satyamurti
,
Iracema F. A. Cavalcanti
,
Paulo Nobre
,
Henrique M. J. Barbosa
,
Celso L. Mendes
, and
Jairo Panetta

Abstract

This article describes the main features of the Brazilian Global Atmospheric Model (BAM), analyses of its performance for tropical rainfall forecasting, and its sensitivity to convective scheme and horizontal resolution. BAM is the new global atmospheric model of the Center for Weather Forecasting and Climate Research [Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)], which includes a new dynamical core and state-of-the-art parameterization schemes. BAM’s dynamical core incorporates a monotonic two-time-level semi-Lagrangian scheme, which is carried out completely on the model grid for the tridimensional transport of moisture, microphysical prognostic variables, and tracers. The performance of the quantitative precipitation forecasts (QPFs) from two convective schemes, the Grell–Dévényi (GD) scheme and its modified version (GDM), and two different horizontal resolutions are evaluated against the daily TRMM Multisatellite Precipitation Analysis over different tropical regions. Three main results are 1) the QPF skill was improved substantially with GDM in comparison to GD; 2) the increase in the horizontal resolution without any ad hoc tuning improves the variance of precipitation over continents with complex orography, such as Africa and South America, whereas over oceans there are no significant differences; and 3) the systematic errors (dry or wet biases) remain virtually unchanged for 5-day forecasts. Despite improvements in the tropical precipitation forecasts, especially over southeastern Brazil, dry biases over the Amazon and La Plata remain in BAM. Improving the precipitation forecasts over these regions remains a challenge for the future development of the model to be used not only for numerical weather prediction over South America but also for global climate simulations.

Full access