Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Georg J. Mayr x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Georg J. Mayr, Johannes Vergeiner, and Alexander Gohm

Abstract

An instrument package to measure temperature, pressure, humidity, and position was designed to be quickly deployable on any automobile to be used for the study of gap and other orographically influenced flows. Differential GPS (global positioning system) measurements together with a distance counter gave the submeter accuracy of vertical position that was needed for observation of changes in the horizontal pressure field, which is an integral measure of the flow field aloft. A slantwise pressure reduction method was tailored for this application and verified with data from radio soundings. The automobile platform was successfully used during the field phase of the Mesoscale Alpine Programme (MAP) to classify flow states and observe hydraulic jumps in gap flows and to extend aircraft measurements to the ground.

Full access
Susanne Drechsel, Georg J. Mayr, Michel Chong, and Fotini K. Chow

Abstract

Dual-Doppler lidar volume scans for 3D wind retrieval must accommodate the conflicting goals of dense spatial coverage and short scan duration. In this work, various scanning strategies are evaluated with semisynthetic wind fields from analytical solutions and numerical simulations over flat and complex terrain using the Multiple-Doppler Synthesis and Continuity Adjustment Technique (MUSCAT) retrieval algorithm. The focus of this study is to determine how volume scan strategies affect performance of the wind retrieval algorithm. Interlaced scanning methods that take into account actual maximum measurement ranges are found to be optimal because they provide the best trade-off between retrieval accuracy, volume coverage, and scan time. A recommendation for scanning strategies is given, depending on actual measurement ranges, the variability of the wind situation, and the trade-off between spatial coverage and temporal smoothing.

Full access
Susanne Drechsel, Georg J. Mayr, Michel Chong, Martin Weissmann, Andreas Dörnbrack, and Ronald Calhoun

Abstract

During the field campaign of the Terrain-induced Rotor Experiment (T-REX) in the spring of 2006, Doppler lidar measurements were taken in the complex terrain of the Californian Owens Valley for six weeks. While fast three-dimensional (3D) wind analysis from measured radial wind components is well established for dual weather radars, only the feasibility was shown for dual-Doppler lidars. A computationally inexpensive, variational analysis method developed for multiple-Doppler radar measurements over complex terrain was applied. The general flow pattern of the 19 derived 3D wind fields is slightly smoothed in time and space because of lidar scan duration and analysis algorithm. The comparison of extracted wind profiles to profiles from radiosondes and wind profiler reveals differences of wind speed and direction of less than 1.1 m s−1 and 3°, on average, with standard deviations not exceeding 2.7 m s−1 and 27°, respectively. Standard velocity–azimuth display (VAD) retrieval method provided higher vertical resolution than the dual-Doppler retrieval, but no horizontal structure of the flow field. The authors suggest a simple way to obtain a good first guess for a dual-lidar scan strategy geared toward 3D wind retrieval that minimizes scan duration and maximizes spatial coverage.

Full access