Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Gillian M. Damerell x
  • Refine by Access: All Content x
Clear All Modify Search
Gillian M. Damerell
,
Karen J. Heywood
,
David P. Stevens
, and
Alberto C. Naveira Garabato

Abstract

Diapycnal mixing rates in the oceans have been shown to have a great deal of spatial variability, but the temporal variability has been little studied. Here results are presented from a method developed to calculate diapycnal diffusivity from moored acoustic Doppler current profiler (ADCP) velocity shear profiles. An 18-month time series of diffusivity is presented from data taken by a LongRanger ADCP moored at 2400-m depth, 600 m above the seafloor, in Shag Rocks Passage, a deep passage in the North Scotia Ridge (Southern Ocean). The Polar Front is constrained to pass through this passage, and the strong currents and complex topography are expected to result in enhanced mixing. The spatial distribution of diffusivity in Shag Rocks Passage deduced from lowered ADCP shear is consistent with published values for similar regions, with diffusivity possibly as large as 90 × 10−4 m2 s−1 near the seafloor, decreasing to the expected background level of ~0.1 × 10−4 m2 s−1 in areas away from topography. The moored ADCP profiles spanned a depth range of 2400–1800 m; thus, the moored time series was obtained from a region of moderately enhanced diffusivity.

The diffusivity time series has a median of 3.3 × 10−4 m2 s−1 and a range from 0.5 × 10−4 to 57 × 10−4 m2 s−1. There is no significant signal at annual or semiannual periods, but there is evidence of signals at periods of approximately 14 days (likely due to the spring–neap tidal cycle) and at periods of 3.8 and 2.6 days most likely due to topographically trapped waves propagating around the local seamount. Using the observed stratification and an axisymmetric seamount, of similar dimensions to the one west of the mooring, in a model of baroclinic topographically trapped waves, produces periods of 3.8 and 2.6 days, in agreement with the signals observed. The diffusivity is anticorrelated with the rotary coefficient (indicating that stronger mixing occurs during times of upward energy propagation), which suggests that mixing occurs due to the breaking of internal waves generated at topography.

Full access
Marina Frants
,
Gillian M. Damerell
,
Sarah T. Gille
,
Karen J. Heywood
,
Jennifer MacKinnon
, and
Janet Sprintall

Abstract

Finescale estimates of diapycnal diffusivity κ are computed from CTD and expendable CTD (XCTD) data sampled in Drake Passage and in the eastern Pacific sector of the Southern Ocean and are compared against microstructure measurements from the same times and locations. The microstructure data show vertical diffusivities that are one-third to one-fifth as large over the smooth abyssal plain in the southeastern Pacific as they are in Drake Passage, where diffusivities are thought to be enhanced by the flow of the Antarctic Circumpolar Current over rough topography. Finescale methods based on vertical strain estimates are successful at capturing the spatial variability between the low-mixing regime in the southeastern Pacific and the high-mixing regime of Drake Passage. Thorpe-scale estimates for the same dataset fail to capture the differences between Drake Passage and eastern Pacific estimates. XCTD profiles have lower vertical resolution and higher noise levels after filtering than CTD profiles, resulting in XCTD κ estimates that are, on average, an order of magnitude higher than CTD estimates. Overall, microstructure diffusivity estimates are better matched by strain-based estimates than by estimates based on Thorpe scales, and CTD data appear to perform better than XCTD data. However, even the CTD-based strain diffusivity estimates can differ from microstructure diffusivities by nearly an order of magnitude, suggesting that density-based fine-structure methods of estimating mixing from CTD or XCTD data have real limitations in low-stratification regimes such as the Southern Ocean.

Full access
Andrew F. Thompson
,
Ayah Lazar
,
Christian Buckingham
,
Alberto C. Naveira Garabato
,
Gillian M. Damerell
, and
Karen J. Heywood

Abstract

The importance of submesoscale instabilities, particularly mixed layer baroclinic instability and symmetric instability, on upper-ocean mixing and energetics is well documented in regions of strong, persistent fronts such as the Kuroshio and the Gulf Stream. Less attention has been devoted to studying submesoscale flows in the open ocean, far from long-term, mean geostrophic fronts, characteristic of a large proportion of the global ocean. This study presents a year-long, submesoscale-resolving time series of near-surface buoyancy gradients, potential vorticity, and instability characteristics, collected by ocean gliders, that provides insight into open-ocean submesoscale dynamics over a full annual cycle. The gliders continuously sampled a 225 km2 region in the subtropical northeast Atlantic, measuring temperature, salinity, and pressure along 292 short (~20 km) hydrographic sections. Glider observations show a seasonal cycle in near-surface stratification. Throughout the fall (September–November), the mixed layer deepens, predominantly through gravitational instability, indicating that surface cooling dominates submesoscale restratification processes. During winter (December–March), mixed layer depths are more variable, and estimates of the balanced Richardson number, which measures the relative importance of lateral and vertical buoyancy gradients, depict conditions favorable to symmetric instability. The importance of mixed layer instabilities on the restratification of the mixed layer, as compared with surface heating and cooling, shows that submesoscale processes can reverse the sign of an equivalent heat flux up to 25% of the time during winter. These results demonstrate that the open-ocean mixed layer hosts various forced and unforced instabilities, which become more prevalent during winter, and emphasize that accurate parameterizations of submesoscale processes are needed throughout the ocean.

Full access