Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Glen E. Liston x
  • The Cold Land Processes Experiment (CLPX) x
  • Refine by Access: All Content x
Clear All Modify Search
Glen E. Liston
and
Christopher A. Hiemstra

Abstract

A methodology for assimilating ground-based and remotely sensed snow data within a snow-evolution modeling system (SnowModel) is presented. The data assimilation scheme (SnowAssim) is consistent with optimal interpolation approaches in which the differences between the observed and modeled snow values are used to constrain modeled outputs. The calculated corrections are applied retroactively to create improved fields prior to the assimilated observations. Thus, one of the values of this scheme is the improved simulation of snow-related distributions throughout the entire snow season, even when observations are only available late in the accumulation and/or ablation periods. Because of this, the technique is particularly applicable to reanalysis applications. The methodology includes the ability to stratify the assimilation into regions where either the observations and/or model has unique error properties, such as the differences between forested and nonforested snow environments. The methodologies are introduced using synthetic data and a simple simulation domain. In addition, the model is applied over NASA’s Cold Land Processes Experiment (CLPX), Rabbit Ears Pass, Colorado, observation domain. Simulations using the data assimilation scheme were found to improve the modeled snow water equivalent (SWE) distributions, and simulated SWE displayed considerably more realistic spatial heterogeneity than that provided by the observations alone.

Full access
Kelly Elder
,
Don Cline
,
Glen E. Liston
, and
Richard Armstrong

Abstract

A field measurement program was undertaken as part NASA’s Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and canopy cover. Soil moisture measurements were made in the near-surface layer in snow pits. Measurements were taken in the Fraser valley, North Park, and Rabbit Ears Pass areas of Colorado. Sites were chosen to gain a wide representation of snowpack types and physiographies typical of seasonally snow-covered regions of the world. The data have been collected with rigorous protocol to ensure consistency and quality, and they have undergone several levels of quality assurance to produce a high-quality spatial dataset for continued cold lands hydrological research. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.

Full access
Glen E. Liston
,
Daniel L. Birkenheuer
,
Christopher A. Hiemstra
,
Donald W. Cline
, and
Kelly Elder

Abstract

This paper describes the Local Analysis and Prediction System (LAPS) and the 20-km horizontal grid version of the Rapid Update Cycle (RUC20) atmospheric analyses datasets, which are available as part of the Cold Land Processes Field Experiment (CLPX) data archive. The LAPS dataset contains spatially and temporally continuous atmospheric and surface variables over Colorado, Wyoming, and parts of the surrounding states. The analysis used a 10-km horizontal grid with 21 vertical levels and an hourly temporal resolution. The LAPS archive includes forty-six 1D surface fields and nine 3D upper-air fields, spanning the period 1 September 2001 through 31 August 2003. The RUC20 dataset includes hourly 3D atmospheric analyses over the contiguous United States and parts of southern Canada and northern Mexico, with 50 vertical levels. The RUC20 archive contains forty-six 1D surface fields and fourteen 3D upper-air fields, spanning the period 1 October 2002 through 31 September 2003. The datasets are archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.

Full access
Glen E. Liston
,
Christopher A. Hiemstra
,
Kelly Elder
, and
Donald W. Cline

Abstract

The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can distribute meteorological forcings, simulate snowpack accumulation and ablation processes, and assimilate snow-related observations. A SnowModel was developed and used to simulate winter snow accumulation across three 30 km × 30 km domains, enveloping the CLPX mesocell study areas (MSAs) in Colorado. The three MSAs have distinct topography, vegetation, meteorological, and snow characteristics. Simulations were performed using a 30-m grid increment and spanned the snow accumulation season (1 October 2002–1 April 2003). Meteorological forcing was provided by 27 meteorological stations and 75 atmospheric analyses grid points, distributed using a meteorological model (MicroMet). The simulations included a data assimilation model (SnowAssim) that adjusted simulated snow water equivalent (SWE) toward ground-based and airborne SWE observations. The observations consisted of SWE over three 1 km × 1 km intensive study areas (ISAs) for each MSA and a collection of 117 airborne gamma observations, each integrating area 10 km long by 300 m wide. Simulated SWE distributions displayed considerably more spatial heterogeneity than the observations alone, and the simulated distribution patterns closely fit the current understanding of snow evolution processes and observed snow depths. This is the result of the MicroMet/SnowModel’s relatively finescale representations of orographic precipitation, elevation-dependant snowmelt, wind redistribution, and snow–vegetation interactions.

Full access
Kelly Elder
,
Angus Goodbody
,
Don Cline
,
Paul Houser
,
Glen E. Liston
,
Larry Mahrt
, and
Nick Rutter

Abstract

A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPX as well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters include air temperature, relative humidity, wind speed and direction, barometric pressure, short- and longwave radiation, leaf wetness, snow depth, snow water content, snow and surface temperatures, volumetric soil moisture content, soil temperature, precipitation, water vapor flux, carbon dioxide flux, and soil heat flux. The CLPX weather stations include 10 main meteorological towers, 1 tower within each of the nine intensive study areas (ISA) and one near the local scale observation site (LSOS); and 36 simplified towers, with one tower at each of the four corners of each of the nine ISAs, which measured a reduced set of parameters. An eddy covariance system within the North Park mesocell study area (MSA) collected a variety of additional parameters beyond the 10 standard CLPX tower components. Additional meteorological observations come from a variety of existing networks maintained by the U.S. Forest Service, U.S. Geological Survey, Natural Resource Conservation Service, and the Institute of Arctic and Alpine Research. Temporal coverage varies from station to station, but it is most concentrated during the 2002/03 winter season. These data are useful in local meteorological energy balance research and for model development and testing. These data can be accessed through the National Snow and Ice Data Center Web site.

Full access