Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Graham Feingold x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Laura D. Riihimaki
,
Connor Flynn
,
Allison McComiskey
,
Dan Lubin
,
Yann Blanchard
,
J. Christine Chiu
,
Graham Feingold
,
Daniel R. Feldman
,
Jake J. Gristey
,
Christian Herrera
,
Gary Hodges
,
Evgueni Kassianov
,
Samuel E. LeBlanc
,
Alexander Marshak
,
Joseph J. Michalsky
,
Peter Pilewskie
,
Sebastian Schmidt
,
Ryan C. Scott
,
Yolanda Shea
,
Kurtis Thome
,
Richard Wagener
, and
Bruce Wielicki

Abstract

Industry advances have greatly reduced the cost and size of ground-based shortwave (SW) sensors for the ultraviolet, visible, and near-infrared spectral ranges that make up the solar spectrum, while simultaneously increasing their ruggedness, reliability, and calibration accuracy needed for outdoor operation. These sensors and collocated meteorological equipment are an important part of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) User Facility, which has supported parallel integrated measurements of atmospheric and surface properties for more than two decades at fixed and mobile sites around the world. The versatile capability of these ground-based measurements includes 1) rich spectral information required for retrieving cloud and aerosol microphysical properties, such as cloud phase, cloud particle size, and aerosol size distributions, and 2) high temporal resolution needed for capturing fast evolution of cloud microphysical properties in response to rapid changes in meteorological conditions. Here we describe examples of how ARM’s spectral radiation measurements are being used to improve understanding of the complex processes governing microphysical, optical, and radiative properties of clouds and aerosol.

Full access
Andrew M. Vogelmann
,
Greg M. McFarquhar
,
John A. Ogren
,
David D. Turner
,
Jennifer M. Comstock
,
Graham Feingold
,
Charles N. Long
,
Haflidi H. Jonsson
,
Anthony Bucholtz
,
Don R. Collins
,
Glenn S. Diskin
,
Hermann Gerber
,
R. Paul Lawson
,
Roy K. Woods
,
Elisabeth Andrews
,
Hee-Jung Yang
,
J. Christine Chiu
,
Daniel Hartsock
,
John M. Hubbe
,
Chaomei Lo
,
Alexander Marshak
,
Justin W. Monroe
,
Sally A. McFarlane
,
Beat Schmid
,
Jason M. Tomlinson
, and
Tami Toto

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about twothirds of the flights during which clouds were sampled occurred in May and June, boundary layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the cloud flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze aerosol– cloud relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

Full access