Search Results

You are looking at 1 - 10 of 35 items for :

  • Author or Editor: Greg J. Holland x
  • Refine by Access: All Content x
Clear All Modify Search
Greg J. Holland

Abstract

Fluctuations in the Australian summer monsoon over the period 1952–82 are described. The basis of the study is an objective definition of the major summer monsoon components based on the low-level zonal winds at Darwin; this is shown to be in good agreement with other large-scale indicators. Statistics are presented and discussed for the interannual variation in summer monsoon onset, extent, active and break conditions, circulation strength, and vertical structure.

Some relationships with the Southern Oscillation are also described. These indicate that the Southern Oscillation Index (SOI) is highly correlated with the intensity and degree of convergence in the low-level monsoonal shear zone, and with the mean daily rainfall rate over northern Australia. There is also a significant correlation between the summer monsoon onset date and the SOI in the following spring, which has implications for El Niño teleconnections.

Full access
Greg J. Holland

Abstract

An analytic model of the radial profiles of sea level pressure and winds in a hurricane is presented. The equations contain two parameters which may be empirically estimated from observations in a hurricane or determined climatologically to define a standard hurricane; example are given. The model is shown to be generally superior to two other widely used models and is considered to be a valuable aid in operational forecasting, case studies and engineering work.

Full access
Greg J. Holland

Abstract

The dynamics of tropical cyclone motion are investigated by solving for instantaneous motion tendencies using the divergent barotropic vorticity equation on a beta plane. Two methods of solution are presented a direct analytic solution for a constant basic current, and a simple numerical solution for more general conditions. These solutions indicate that cyclone motion can be accurately prescribed by a nonlinear combination of two processes. 1) an interaction between the cyclone and its basic current (the well known steering concept), and 2) an interaction with the Earth's vorticity field which causes a westward deviation from the pure steering flow. The nonlinear manner in which these two processes combine with the effect of asymmetries in the steering current raise some interesting questions on the way in which cyclones of different characteristics interact with their environment, and has implications for tropical cyclone forecasting and the manner in which forecasting techniques are derived.

Full access
Greg J. Holland

Abstract

The analytic predictions of tropical cyclone motion by Holland are shown to be in very good agreement with observations in the Australian southwest Pacific region. These results indicate that a combined linear asymmetric advection and divergence of earth and cyclone vorticity provides the main mechanism for tropical cyclone motion. It is also shown that an accurate prediction requires a consideration of horizontal and vertical asymmetries in the wind field. Hence, care needs to be taken in defining a steering current.

Full access
Greg J. Holland

Abstract

A thermodynamic approach to estimating maximum potential intensity (MPI) of tropical cyclones is described and compared with observations and previous studies. The approach requires an atmospheric temperature sounding, SST, and surface pressure; includes the oceanic feedback of increasing moist entropy associated with falling surface pressure over a steady SST; and explicitly incorporates a cloudy eyewall and a clear eye. Energetically consistent, analytic solutions exist for all known atmospheric conditions. The method is straightforward to apply and is applicable to operational analyses and numerical model forecasts, including climate model simulations.

The derived MPI is highly sensitive to the surface relative humidity under the eyewall, to the height of the warm core, and to transient changes of ocean surface temperature. The role of the ocean is to initially contribute to the establishment of the ambient environment suitable for cyclone development, then to provide the additional energy required for development of an intense cyclone. The major limiting factor on cyclone intensity is the height and amplitude of the warm core that can develop; this is closely linked to the height to which eyewall clouds can reach, which is related to the level of moist entropy that can be achieved from ocean interactions under the eyewall. Moist ascent provides almost all the warming above 200 hPa throughout the cyclone core, including the eye, where warm temperatures are derived by inward advection and detrainment mixing from the eyewall. The clear eye contributes roughly half the total warming below 300 hPa and produces a less intense cyclone than could be achieved by purely saturated moist processes.

There are necessarily several simplifications incorporated to arrive at a tractable solution, the consequences of which are discussed in detail. Nevertheless, application of the method indicates very close agreement with observations. For SST < 26°C there is generally insufficient energy for development. From 26° to 28°C SST the ambient atmosphere warms sharply in the lower troposphere and cools near the tropopause, but with little change in midlevels. The result is a rapid increase of MPI of about 30 hPa °C−1. At higher SST, the atmospheric destabilization ceases and the rate of increase of MPI is reduced.

Full access
Peter G. Black
and
Greg J. Holland

Abstract

The boundary layer structure of Tropical Cyclone Kerry (1979) is investigated using composite analysis of research aircraft, surface ship, and automatic weather station observations. The boundary layer was moist, convective, and strongly confluent to the east of the tropical cyclone center but was dry, subsident, and diffluent to the west. The vertical momentum transport in the eastern convective sector of Kerry was around two to three times the surface frictional dissipation. In contrast, the stable boundary layer in the western sector consisted of a shallow mixed layer capped by an equivalent potential temperature minimum and a low-level jet, which underwent a marked diurnal oscillation. Three mechanisms appear to have contributed to the observed asymmetry: 1) a general, zonal distortion arose from cyclonic rotation across a gradient of earth vorticity; 2) a westerly environmental vertical shear produced forced ascent on the east side of the storm and subsidence on the west side throughout the lower and midtroposphere; and 3) the western sector boundary layer was modified by an upstream cold tongue generated by the tropical cyclone passage. The authors present evidence that substantial drying also resulted from shear-induced mixing of the subsident environmental air in the region of the low-level jet.

Thermal boundary layer budgets are derived using both a general mixing theory approach and direct flux calculations from aircraft reconnaissance data. Use of actual sea surface temperature fields are essential. The surface flux estimates of latent heat are near the average of previous studies, but the sensible heat fluxes are downward into the ocean. Since horizontal advection also cooled the boundary layer, the thermal structure was maintained by downward fluxes of sensible heat from the top of the boundary layer of around 100 W m−2. We conclude that the pattern of oceanic cooling directly determines the pattern of vertical air-sea and advective sensible heat fluxes and indirectly determines the pattern of latent heat fluxes through forcing of PBL drying at the downwind end of the SST cold pool. It further enhances the inward penetration and negative feedback resulting from an easterly trade wind surge associated with a mobile trough in the westerlies.

Full access
Elizabeth E. Ebert
and
Greg J. Holland

Abstract

A detailed analysis is made of the development of a region of cold cloud-top temperatures in Tropical Cyclone Hilda (1990) in the Coral Sea off eastern Australia. Observed temperatures of approximately 173 K (−100°C) from two independent satellite sources indicate that the convective turrets penetrated well into the stratosphere to an estimated height of around 19.2 km.

The analytical parcel model of Schlesinger is used, together with available observations from the cyclone vicinity, to estimate the convective updrafts required to produce the observed stratosphere penetration. Under realistic assumptions of entrainment and hydrometeor drag, an updraft speed of between 15 and 38 m s−1 at tropopause level is required to provide the observed stratospheric penetration. Independent calculations using observed anvil expansion and environmental CAPE (convective available potential energy) support these updraft findings.

Full access
Elizabeth A. Ritchie
and
Greg J. Holland

Abstract

Five characteristic, low-level, large-scale dynamical patterns associated with tropical cyclogenesis in the western North Pacific basin are examined along with their capacity to generate the type of mesoscale convective systems that precede genesis. An 8-yr analysis set for the region is used to identify, and create composites for, the five characteristic patterns of monsoon shear line, monsoon confluence region, monsoon gyre, easterly waves, and Rossby energy dispersion. This brings out the common processes that contribute to tropical cyclogenesis within that pattern, which are described in detail.

A 3-yr set of satellite data is then used to analyze the mesoscale convective system activity for all cases of genesis in that period and to stratify based on the above large-scale patterns. It is found that mesoscale convective systems develop in all cases of genesis except one. Seventy percent of cases developed mesoscale convective systems at more than one time during the genesis period and 44% of cases developed multiple mesoscale convective systems at a single time. Stratification by pattern type indicates some differentiation in mesoscale convective activity and it is inferred that this is due to the large-scale processes. Two of the five patterns, the monsoon shear line and the monsoon confluence region, had more than the average amount of mesoscale convective activity during the genesis period. These patterns also account for 70% of the total genesis events in the 8-yr period. The analysis for the other three patterns exhibit less mesoscale convective system activity during genesis. This may indicate either that genesis processes for these patterns are not as dominated by mesoscale convective system activity, or that genesis occurs more rapidly in these cases.

Full access
Elizabeth A. Ritchie
and
Greg J. Holland

Abstract

The development of Typhoon Irving is investigated using a variety of data, including special research aircraft data from the Tropical Cyclone Motion (TCM-92) experiment, objective analyses, satellite data, and traditional surface and sounding data. The development process is treated as a dry-adiabatic vortex dynamics problem, and it is found that environmental and mesoscale dynamics mutually enhance each other in a cooperative interaction during cyclone formation. Synoptic-scale interactions result in the evolution of the hostile environment toward more favorable conditions for storm development. Mesoscale interactions with the low-level, large-scale circulations and with other midlevel, mesoscale features result in development of vorticity in the midlevels and enhancement of the low-level vorticity associated with the developing surface cyclone.

Multiple developments of mesoscale convective systems after the storm reaches tropical depression strength suggests both an increase in low-level confluence and a tendency toward recurrent development of associated mesoscale convective vortices. This is observed in both aircraft data and satellite imagery where subsequent interactions, including mergers with the low-level, tropical depression vortex, are observed. A contour dynamics experiment suggests that the movement of mesoscale convective systems in satellite imagery corresponds well to the movement of their associated midlevel vortices. Results from a simple baroclinic experiment show that the midlevel vortices affect the large-scale, low-level circulation in two ways: 1) initially, interactions between midlevel vortices produce a combined vortex of greater depth; 2) interaction between midlevel vortices and the low-level circulation produces a development downward of the midlevel vorticity. This strengthens the surface vortex and develops a more cohesive vortex that extends from the surface through the midtroposphere.

Full access
Yuqing Wang
and
Greg J. Holland

Abstract

The dynamics of the movement of an initially axisymmetric baroclinic vortex embedded in an environment at rest on a beta plane is investigated with a three-dimensional primitive equation model. The study focuses on the motion and evolution of an adiabatic vortex and especially the manner in which vertical coupling of a tilted vortex influences its motion. The authors find that the vortex movement is determined by both the asymmetric flow over the vortex core associated with beta gyres and the flow associated with vertical projection of the tilted potential vorticity anomaly. The effects of vortex tilt can be large and complex. The secondary divergent circulation is found to be associated with the development of potential temperature anomalies required to maintain a balanced state. The processes involved strongly depend on the vertical structure, size, and intensity of the vortex together with external parameters such as the earth rotation and static stability of the environment. As a result, simple relationships between vortex motion and the vertical mean relative angular momentum are not always applicable.

Full access