Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Greg Stossmeister x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Roy M. Rasmussen
,
Ben C. Bernstein
,
Masataka Murakami
,
Greg Stossmeister
,
Jon Reisner
, and
Boba Stankov

Abstract

The mesoscale and microscale structure and evolution of a shallow, upslope cloud is described using observations obtained during the Winter Icing and Storms Project (WISP) and model stimulations. The upslope cloud formed within a shallow arctic air mass that moved into the region east of the Rocky Mountains between 12 and 16 February and contained significant amounts of supercooled liquid water for nearly 30 h. Two distinct layers were evident in the cloud. The lower layer was near neutral stability (boundary layer air) and contained easterly upslope flow. The upper layer (frontal transition zone) was thermodynamically stable and contained southerly flow. Overlying the upslope cloud was a dry, southwesterly flow of 20–25 m s −1, resulting in strong wind shear near cloud top. Within 10 km of the Rocky Mountain barrier, easterly low-level flow was lifted up and over the mountains. The above-described kinematic and thermodynamic structure produced three distinct mechanisms leading to the production of supercooled liquid water: 1) upslope flow over the gently rising terrain leading into the Colorado Front Range, up the slopes of the Rocky Mountains and over local ridges, 2)upglide flow within a frontal transition zone, and 3) turbulent mixing in the boundary layer. Supercooled liquid water was also produced by 1) upward motion at the leading edge of three cold surges and 2) vertical motion produced by low-level convergence in the surface wind field. Large cloud droplets were present near the top of this cloud (approximately 50-µm diameter), which grew by a direct coalescence process into freezing drizzle in regions of the storm where the liquid water content was greater than 0.25 g m −3 and vertical velocity was at 10 cm s −1

Ice crystal concentrations greater than 1 L−1 were observed in the lower cloud layer containing boundary layer air when the top of the boundary layer air when the top of the boundary layer was colder than −12°C. The upper half of the cloud was ice-free despite temperatures as low as −15°C, resulting in long-lived supercooled liquid water in this region of the cloud.

Full access