Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Greg Thompson x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Roy M. Rasmussen
,
István Geresdi
,
Greg Thompson
,
Kevin Manning
, and
Eli Karplus

Abstract

This study evaluates the role of 1) low cloud condensation nuclei (CCN) conditions and 2) preferred radiative cooling of large cloud drops as compared to small cloud drops, on cloud droplet spectral broadening and subsequent freezing drizzle formation in stably stratified layer clouds. In addition, the sensitivity of freezing drizzle formation to ice initiation is evaluated. The evaluation is performed by simulating cloud formation over a two-dimensional idealized mountain using a detailed microphysical scheme implemented into the National Center for Atmospheric Research–Pennsylvania State University Mesoscale Model version 5. The height and width of the two-dimensional mountain were designed to produce an updraft pattern with extent and magnitude similar to documented freezing drizzle cases. The results of the model simulations were compared to observations and good agreement was found.

The key results of this study are 1) low CCN concentrations lead to rapid formation of freezing drizzle. This occurs due to the broad cloud droplet size distribution formed throughout the cloud in this situation, allowing for rapid broadening of the spectra to the point at which the collision–coalescence process is initiated. 2) Continental clouds can produce freezing drizzle given sufficient depth and time. 3) Radiative cooling of the cloud droplets near cloud top can be effective in broadening an initially continental droplet spectrum toward that of a maritime cloud droplet size distribution. 4) Any mechanism that only broadens the cloud droplet spectra near cloud top, such as radiative cooling, may not act over a sufficiently broad volume of the cloud to produce significant amounts of freezing drizzle. 5) Low ice-crystal concentrations (<0.08 L−1) in the region of freezing drizzle formation is a necessary condition for drizzle formation (from both model and observations). 6) Ice nuclei depletion is a necessary requirement for the formation of freezing drizzle. 7) The maximum cloud water mixing ratio and threshold amount for the onset of drizzle in stably stratified clouds was shown to depend strongly on the CCN concentration. 8) A key factor controlling the formation of freezing drizzle in stratified clouds is the lifetime of the mesoscale and synoptic conditions and the thickness and length of the cloud.

Full access
Jason M. Keeler
,
Brian F. Jewett
,
Robert M. Rauber
,
Greg M. McFarquhar
,
Roy M. Rasmussen
,
Lulin Xue
,
Changhai Liu
, and
Gregory Thompson

Abstract

This paper assesses the influence of radiative forcing and latent heating on the development and maintenance of cloud-top generating cells (GCs) in high-resolution idealized Weather Research and Forecasting Model simulations with initial conditions representative of the vertical structure of a cyclone observed during the Profiling of Winter Storms campaign. Simulated GC kinematics, structure, and ice mass are shown to compare well quantitatively with Wyoming Cloud Radar, cloud probe, and other observations. Sensitivity to radiative forcing was assessed in simulations with longwave-only (nighttime), longwave-and-shortwave (daytime), and no-radiation parameterizations. The domain-averaged longwave cooling rate exceeded 0.50 K h−1 near cloud top, with maxima greater than 2.00 K h−1 atop GCs. Shortwave warming was weaker by comparison, with domain-averaged values of 0.10–0.20 K h−1 and maxima of 0.50 K h−1 atop GCs. The stabilizing influence of cloud-top shortwave warming was evident in the daytime simulation’s vertical velocity spectrum, with 1% of the updrafts in the 6.0–8.0-km layer exceeding 1.20 m s−1, compared to 1.80 m s−1 for the nighttime simulation. GCs regenerate in simulations with radiative forcing after the initial instability is released but do not persist when radiation is not parameterized, demonstrating that radiative forcing is critical to GC maintenance under the thermodynamic and vertical wind shear conditions in this cyclone. GCs are characterized by high ice supersaturation (RHice > 150%) and latent heating rates frequently in excess of 2.00 K h−1 collocated with vertical velocity maxima. Ice precipitation mixing ratio maxima of greater than 0.15 g kg−1 were common within GCs in the daytime and nighttime simulations.

Full access
Jason M. Keeler
,
Brian F. Jewett
,
Robert M. Rauber
,
Greg M. McFarquhar
,
Roy M. Rasmussen
,
Lulin Xue
,
Changhai Liu
, and
Gregory Thompson

Abstract

Recent field observations suggest that cloud-top precipitation generating cells (GCs) are ubiquitous in the warm-frontal and comma-head regions of midlatitude winter cyclones. The presence of fallstreaks emanating from the GCs and their persistence either to the surface or until merging into precipitation bands suggests that GCs are a critical component of the precipitation process in these cyclones. This paper is the second part of a three-part series that investigates the dynamics of GCs through very-high-resolution idealized Weather Research and Forecasting (WRF) Model simulations. This paper assesses the role of cloud-top instability paired with nighttime, daytime, or no radiative forcing on the development and maintenance (or lack) of GCs. Under initially unstable conditions at cloud top, GCs develop regardless of radiative forcing but only persist clearly with radiative forcing. Cloud-top destabilization due to longwave cooling leads to development of GCs even under initially neutral and stable conditions, providing a physical explanation for the observed ubiquity of GCs atop winter cyclones. GCs do not develop in initially stable simulations with no radiation. Decreased range in vertical velocity spectra under daytime radiative forcing is consistent with offset of the destabilizing influence of longwave cooling by shortwave heating.

Full access
Jason M. Keeler
,
Robert M. Rauber
,
Brian F. Jewett
,
Greg M. McFarquhar
,
Roy M. Rasmussen
,
Lulin Xue
,
Changhai Liu
, and
Gregory Thompson

Abstract

Cloud-top generating cells (GCs) are a common feature atop stratiform clouds within the comma head of winter cyclones. The dynamics of cloud-top GCs are investigated using very high-resolution idealized WRF Model simulations to examine the role of shear in modulating the structure and intensity of GCs. Simulations were run for the same combinations of radiative forcing and instability as in of this series, but with six different shear profiles ranging from 0 to 10 m s−1 km−1 within the layer encompassing the GCs.

The primary role of shear was to modulate the organization of GCs, which organized as closed convective cells in simulations with radiative forcing and no shear. In simulations with shear and radiative forcing, GCs organized in linear streets parallel to the wind. No GCs developed in the initially stable simulations with no radiative forcing. In the initially unstable and neutral simulations with no radiative forcing or shear, GCs were exceptionally weak, with no clear organization. In moderate-shear (Δuz = 2, 4 m s−1 km−1) simulations with no radiative forcing, linear organization of the weak cells was apparent, but this organization was less coherent in simulations with high shear (Δuz = 6, 8, 10 m s−1 km−1). The intensity of the updrafts was primarily related to the mode of radiative forcing but was modulated by shear. The more intense GCs in nighttime simulations were either associated with no shear (closed convective cells) or strong shear (linear streets). Updrafts within GCs under conditions with radiative forcing were typically ~1–2 m s−1 with maximum values < 4 m s−1.

Full access