Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: H. G. Arango x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Javier Zavala-Garay, J. L. Wilkin, and H. G. Arango

Abstract

One of the many applications of data assimilation is the estimation of adequate initial conditions for model forecasts. In this work, the authors evaluate to what extent the incremental, strong-constraint, four-dimensional variational data assimilation (IS4DVAR) can improve prediction of mesoscale variability in the East Australian Current (EAC) using the Regional Ocean Modeling System (ROMS). The observations considered in the assimilation experiments are daily composites of satellite sea surface temperature (SST), 7-day average reanalysis of satellite altimeter sea level anomalies, and subsurface temperature profiles from high-resolution expendable bathythermograph (XBT). Considering all available observations for years 2001 and 2002, ROMS forecast initial conditions are generated every week by assimilating the available observations from the 7 days prior to the forecast initial time. It is shown that assimilation of surface information only [SST and sea surface height (SSH)] results in poor estimates of the true subsurface ocean state (as depicted by the XBTs) and therefore poor forecast skill of subsurface conditions. Including the XBTs in the assimilation experiments improves the ocean state estimation in the vicinity of the XBT transects. By introducing subsurface pseudo-observations (which are called synthetic CTD) based on an empirical relationship between satellite surface observations and subsurface variability, the authors find a significant improvement in ocean state estimates that leads to skillful forecasts for up to 2 weeks in the domain considered.

Full access