Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: H. Morrison x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
A. Gettelman
and
H. Morrison

Abstract

Prognostic precipitation is added to a cloud microphysical scheme for global climate models. Results indicate very similar performance to other commonly used mesoscale schemes in an offline driver for idealized warm rain cases, better than the previous version of the global model microphysics scheme with diagnostic precipitation. In the mixed phase regime, there is significantly more water and less ice, which may address a common bias seen with the scheme in climate simulations in the Arctic. For steady forcing cases, the scheme has limited sensitivity to time step out to the ~15-min time steps typical of global models. The scheme is similar to other schemes with moderate sensitivity to vertical resolution. The limited time step sensitivity bodes well for use of the scheme in multiscale models from the mesoscale to the large scale. The scheme is sensitive to idealized perturbations of cloud drop and crystal number. Precipitation decreases and condensate increases with increasing drop number, indicating substantial decreases in precipitation efficiency. The sensitivity is less than with the previous version of the scheme for low drop number concentrations (N c < 100 cm−3). Ice condensate increases with ice number, with large decreases in liquid condensate as well for a mixed phase case. As expected with prognostic precipitation, accretion is stronger than with diagnostic precipitation and the accretion to autoconversion ratio increases faster with liquid water path (LWP), in better agreement with idealized models and earlier studies than the previous version.

Full access
A. Gettelman
,
H. Morrison
, and
S. J. Ghan

Abstract

The global performance of a new two-moment cloud microphysics scheme for a general circulation model (GCM) is presented and evaluated relative to observations. The scheme produces reasonable representations of cloud particle size and number concentration when compared to observations, and it represents expected and observed spatial variations in cloud microphysical quantities. The scheme has smaller particles and higher number concentrations over land than the standard bulk microphysics in the GCM and is able to balance the top-of-atmosphere radiation budget with 60% the liquid water of the standard scheme, in better agreement with retrieved values. The new scheme diagnostically treats both the mixing ratio and number concentration of rain and snow, and it is therefore able to differentiate the two key regimes, consisting of drizzle in shallow, warm clouds and larger rain drops in deeper cloud systems. The modeled rain and snow size distributions are consistent with observations.

Full access
A. Gettelman
,
H. Morrison
,
S. Santos
,
P. Bogenschutz
, and
P. M. Caldwell

Abstract

A modified microphysics scheme is implemented in the Community Atmosphere Model, version 5 (CAM5). The new scheme features prognostic precipitation. The coupling between the microphysics and the rest of the model is modified to make it more flexible. Single-column tests show the new microphysics can simulate a constrained drizzling stratocumulus case. Substepping the cloud condensation (macrophysics) within a time step improves single-column results. Simulations of mixed-phase cases are strongly sensitive to ice nucleation. The new microphysics alters process rates in both single-column and global simulations, even at low (200 km) horizontal resolution. Thus, prognostic precipitation can be important, even in low-resolution simulations where advection of precipitation is not important. Accretion dominates as liquid water path increases in agreement with cloud-resolving model simulations and estimates from observations. The new microphysics with prognostic precipitation increases the ratio of accretion over autoconversion. The change in process rates appears to significantly reduce aerosol–cloud interactions and indirect radiative effects of anthropogenic aerosols by up to 33% (depending on substepping) to below 1 W m−2 of cooling between simulations with preindustrial (1850) and present-day (2000) aerosol emissions.

Full access
Adele K. Morrison
,
Matthew H. England
, and
Andrew McC. Hogg

Abstract

This study explores how buoyancy-driven modulations in the abyssal overturning circulation affect Southern Ocean temperature and salinity in an eddy-permitting ocean model. Consistent with previous studies, the modeled surface ocean south of 50°S cools and freshens in response to enhanced surface freshwater fluxes. Paradoxically, upper-ocean cooling also occurs for small increases in the surface relaxation temperature. In both cases, the surface cooling and freshening trends are linked to reduced convection and a slowing of the abyssal overturning circulation, with associated changes in oceanic transport of heat and salt. For small perturbations, convective shutdown does not begin immediately, but instead develops via a slow feedback between the weakened overturning circulation and buoyancy anomalies. Two distinct phases of surface cooling are found: an initial smaller trend associated with the advective (overturning) adjustment of up to ~60 yr, followed by more rapid surface cooling during the convective shutdown period. The duration of the first advective phase decreases for larger forcing perturbations. As may be expected during the convective shutdown phase, the deep ocean warms and salinifies for both types of buoyancy perturbation. However, during the advective phase, the deep ocean freshens in response to freshwater perturbations but salinifies in the surface warming perturbations. The magnitudes of the modeled surface and abyssal trends during the advective phase are comparable to the recent observed multidecadal Southern Ocean temperature and salinity changes.

Full access
P. R. Field
,
A. Gettelman
,
R. B. Neale
,
R. Wood
,
P. J. Rasch
, and
H. Morrison

Abstract

Identical composite analysis of midlatitude cyclones over oceanic regions has been carried out on both output from the NCAR Community Atmosphere Model, version 3 (CAM3) and multisensor satellite data. By focusing on mean fields associated with a single phenomenon, the ability of the CAM3 to reproduce realistic midlatitude cyclones is critically appraised. A number of perturbations to the control model were tested against observations, including a candidate new microphysics package for the CAM. The new microphysics removes the temperature-dependent phase determination of the old scheme and introduces representations of microphysical processes to convert from one phase to another and from cloud to precipitation species. By subsampling composite cyclones based on systemwide mean strength (mean wind speed) and systemwide mean moisture the authors believe they are able to make meaningful like-with-like comparisons between observations and model output. All variations of the CAM tested overestimate the optical thickness of high-topped clouds in regions of precipitation. Over a system as a whole, the model can both over- and underestimate total high-topped cloud amounts. However, systemwide mean rainfall rates and composite structure appear to be in broad agreement with satellite estimates. When cyclone strength is taken into account, changes in moisture and rainfall rates from both satellite-derived observations and model output as a function of changes in sea surface temperature are in accordance with the Clausius–Clapeyron equation. The authors find that the proposed new microphysics package shows improvement to composite liquid water path fields and cloud amounts.

Full access
Adele K. Morrison
,
Wilma G. C. Huneke
,
Julia Neme
,
Paul Spence
,
Andrew McC. Hogg
,
Matthew H. England
, and
Stephen M. Griffies

Abstract

Winds around the Antarctic continental margin are known to exert a strong control on the local ocean stratification and circulation. However, past work has largely focused on the ocean response to changing winds in limited regional sectors and the circumpolar dynamical response to polar wind change remains uncertain. In this work, we use a high-resolution global ocean–sea ice model to investigate how dense shelf water formation and the temperature of continental shelf waters respond to changes in the zonal and meridional components of the polar surface winds. Increasing the zonal easterly wind component drives an enhanced southward Ekman transport in the surface layer, raising sea level over the continental shelf and deepening coastal isopycnals. The downward isopycnal movement cools the continental shelf, as colder surface waters replace warmer waters below. However, in this model the zonal easterly winds do not impact the strength of the abyssal overturning circulation, in contrast to past idealized model studies. Instead, increasing the meridional wind speed strengthens the abyssal overturning circulation via a sea ice advection mechanism. Enhanced offshore meridional wind speed increases the northward export of sea ice, resulting in decreased sea ice thickness over the continental shelf. The reduction in sea ice coverage leads to increased air–sea heat loss, sea ice formation, brine rejection, dense shelf water formation, and abyssal overturning circulation. Increasing the meridional winds causes warming at depth over most of the continental shelf, due to a heat advection feedback associated with the enhanced overturning circulation.

Restricted access