Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: H. Zhang x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Jun Li
,
Walter W. Wolf
,
W. Paul Menzel
,
Wenjian Zhang
,
Hung-Lung Huang
, and
Thomas H. Achtor

Abstract

The International Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) Processing Package (IAPP) has been developed to retrieve the atmospheric temperature profile, moisture profile, atmospheric total ozone, and other parameters in both clear and cloudy atmospheres from the ATOVS measurements. The algorithm that retrieves these parameters contains four steps: 1) cloud detection and removal, 2) bias adjustment for ATOVS measurements, 3) regression retrieval processes, and 4) a nonlinear iterative physical retrieval. Nine (3 × 3) adjacent High-Resolution Infrared Sounder (HIRS)/3 spot observations, together with Advanced Microwave Sounding Unit-A observations remapped to the HIRS/3 resolution, are used to retrieve the temperature profile, moisture profile, surface skin temperature, total atmospheric ozone and microwave surface emissivity, and so on. ATOVS profile retrieval results are evaluated by root-mean-square differences with respect to radiosonde observation profiles. The accuracy of the retrieval is about 2.0 K for the temperature at 1-km vertical resolution and 3.0–6.0 K for the dewpoint temperature at 2-km vertical resolution in this study. The IAPP is now available to users worldwide for processing the real-time ATOVS data.

Full access
C. S. B. Grimmond
,
M. Blackett
,
M. J. Best
,
J. Barlow
,
J-J. Baik
,
S. E. Belcher
,
S. I. Bohnenstengel
,
I. Calmet
,
F. Chen
,
A. Dandou
,
K. Fortuniak
,
M. L. Gouvea
,
R. Hamdi
,
M. Hendry
,
T. Kawai
,
Y. Kawamoto
,
H. Kondo
,
E. S. Krayenhoff
,
S-H. Lee
,
T. Loridan
,
A. Martilli
,
V. Masson
,
S. Miao
,
K. Oleson
,
G. Pigeon
,
A. Porson
,
Y-H. Ryu
,
F. Salamanca
,
L. Shashua-Bar
,
G-J. Steeneveld
,
M. Tombrou
,
J. Voogt
,
D. Young
, and
N. Zhang

Abstract

A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no comparison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.

Full access